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Motivation: The Ridge

The Ridge Structure
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Correlations within the CGC

Final state correlations carry the imprint of the partonic correlations that
exist in the initial state:
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WHAT IS THE PHYSICS BEHIND THE GLASMA GRAPH CALCULATIONS?

I
BOSE ENHANCEMENT OF GLUONS IN THE HADRONIG WAVE-FUNCTION!!!
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Bose enhancement in a nutshell (1)

Consider a state with fixed occupation numbers of N species of bosons at different

momenta: :
ot n'(p)
(i (p)}) = Hm( (”)> )

with a finite volume V and periodic boundary conditions so that momenta are
discrete. (i=1,2,--- ,N)

The mean particle density :

n=({n'(p)}1a" ()3 (){n' (p)}) = D n'(p)

ip

The 2-particle correlator:
inx-space =+ | p(x,y) = {{n(p)}]a"(x)a¥ () ()2 (y) {n(p)})

in pspace | D(p. k) = ({n(p)}al"(p)al’(q)a () (m) {n(p)})|

= D(p. k) = d(p — 1)6(q — m) 32 n'(p) 32; W (q) + 6(p — m)d(q — 1) 3=; n'(p)n'(q)
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Bose enhancement in a nutshell (2)

Using these results, the 2-particle correlator in coordinate space:

2

d3
D(x,y)=n +Z‘/ Pl (p)

the Bose enhancement term
in momentum space:

—_—
D(p,k)[zni(p)} 2k +olp = k) 3 [P

i -

J

@ It vanishes when the points are far away!

o It gives O(1/N) enhancement when the points coincide!

The O(1/N) suppression is due to the fact the second term contains a single sum
over the species index!

The physics: Only bosons of the same species are correlated with each other.
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Bose enhancement in CGC?

The Bose enhancement is a generic phenomenon, and is not tied to the state
with fixed number of of particles.

HOWEVER,

Classical-like coherent states do not exhibit such behaviour!!!

Consider a coherent state:

|b(x)) = exp{i / dx b(x) [a'(x) +aT"(x)}} 10)
A trivial calculation in this state gives

(b(x)[a" (x)a’ (x)|b(x)) = b'(x)b'(x)

(b(x)[a""(x)a" (y)a'(x)a ()| b(x)) = b'(x)b' (x) /()P (¥)

SO

|D(x,y) = n(x)n(y)|

Thus, in order to exhibit Bose enhancement, a state has to be nonclassical.
CGC is defined in terms of classical fields. Can they produce Bose enhancement??

YES!!

e .,




Glasma Graphs

Aim: to show that angular collimation arising from glasma graph calculation
is due to the Bose enhancement in the projectile wave-function.

Consider inclusive two particle production and assume parton-hadron duality.

af(k)  af(ks) alky)  alky) af(k)  af(ks) a(ks)  alks) al(k)  al(ks) alks)  alks)

with N(k) =dipole scattering probability :

N(K) = — / P e <Nictr [sT(x)S(O)]>T
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Averaging over the projectile

atk) [l (k) k) Yalk)
T T
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e B2 & Cl:
@ A3 is trivial contraction! (not interesting!) o suppressed at high momenta
@ B3& C3 - A1 & A2with T « P. o xd@(p+q)
@ Bl & C2: suppressed at high momenta. o lead to HBT correlations
[Kovchegov, Wertepny] (2013)
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Gluon Production

Type A o [, (inlal/ (ki)a}l (k2)ak(ki)ah (k) lin)p N(p — ki) N(q — ko)
D(ky, ko)

N(p — k) = the probability that incoming gluon with transverse momentum k
acquires transverse momentum p after the scattering.

CGC hadronic wave-function is boost invariant.

I
a;(k) = \%y f|,7<y/2\ %’T’ 32(777 k).

with the standard commutation relations:

[[4(K). 2} (p)] = (27)26,6076@) (k — p) |

e .,



Averaging over the projectile

Averaging over the projectile state in CGC: @ average over soft degrees of freedom

@ average over the valence color charge density p

The wave-function for the soft fields at fixed p:

iy = {i | bg(i w0 + -0 b o

Weizsicker-Williams field bi(k) = gpa(k)’;f—zf
Averaging over p = integrating over p with some weight functional W{p]!

_f 1 _
Take MV model: (-}, = N [ D[p] --- e I a2 P()(=K)

This defines the density matrix (operator) on the soft gluon Hilbert space:

F=N / Dlp] & M aPa(RPa(=H) i f, i (@04(=a) gy (0| &= i bhPISE(=P)

where ¢ (k) = ab(k) + aai(fk).
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The Enhancement

Integration over p gives:

2 2 A . +o0o
5 = eﬁWk’kf%(k)qﬂ,(k){;:fh[

n=0

oo ~p B 0 4 0y ol (— k)
< (0] | [T Pladln (—pm)| pe 2 S
m=1

I [ £ gy ;:,(pm)} 0

4
m—1" Pm Pm

The correlator that we are interested in :

D(ky, ke) = tr[pal (k) (ka)ak(ki)ah(k2)]

2 K kb K Kb g% 1% (ko )i (ko)
ki k3 ki k3

% {1 + m [5(2)(;(1 — ko) + 6@ (kg + kg)] } .

D(ki, ko) = S2(N? — 1)

The first term is the "classical” term (the square of the number of particles)
The second term is the typical Bose enhancement term!
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Correlated production

Consider:

@ Incoming projectile wave-function with saturation momentum Qs
@ choose ki and k, to be of the same order as Qs

Then:

@ the momentum transfer during the scattering is less than Qs
@ N(p — k1)N(p — ko) does not have large effect!

Thus the initial correlation is transmitted to to final state.

FOR GLUONS:

INITIAL STATE BOSE ENHANCEMENT =- FINAL STATE CORRELATIONS

e .,



What about quark correlations: Pauli blocking?

Are quarks in the CGC state subject to correlations?
Within the "glasma graph” approach:

@ gluons:

o final state correlations are due to the Bose enhancement of the gluons in the
projectile wave function.

o This effect is long range in rapidity since the CGC wave function is dominated by
the rapidity integrated mode of the soft gluon field.
@ quarks:

o quarks should experience Pauli blocking = the probability to find two identical
quarks with the same quantum numbers in the CGC state should be supressed.

o Is the effect short or long range in rapidity?

13/24



Quark contribution to the wave function (1)

The free part of the Light Cone Hamiltonian:
o= | (k) Sk K)
O Je s 2k+ 2
/ (P, p) das(p™,p) + dly(p". p) dus(p™, p)

To zeroth order the vacuum of the LCH is simply the zero energy Fock space
vacuum of the operators a, d and d:

ag|0) =0, dpl0) =0, d,|0) =0, E=0.
The normalized one-particle states to zeroth order are

1

kT, k,a,i) = EE a?T(k*, k) |0),

(ki ka,ilk ko, boj) = 6726500 (ky — ka)d(ki — k),
PR = s a0

(pf. 1, s1lps P2, B,%2) = apbsis, 07 (p1 — p2)3(p — PY)

e .,



Quark contribution to the wave function (2)

The full Hamiltonian contains several types of perturbations:
O0H = 6HP + 0H&99 + ...

Interaction with the background field: H? = §HP8 4 dHP99 4 GHP&8

Quark-gluon interaction: §H& 99

@ using the explicit expressions of the corrections to the free Hamiltonian, we can
write the relevant matrix elements needed for the calculation of the dressed
quark wave function:

(gl0H"8]0),  (qql|o0H"0),  (qq|0H=|g)

@ with all these ingredients the dressed wave function

WP =gt [ [ p (R 0.8.5) dla(p) 3L (0) ol (0) (@] 1)
P:5,9:d

+virtual

The amplitude ¢33, (k*, p, q,0) = 22 [, p(K) dasr(k, P, q; )

e



Quark pair production cross section

The formal expression for the inclusive quark pair production emission reads

T = (01Q 81 Qdl s, (k1) o, (k) d (k) ds - (k2) 25 Q1(0)

@ §: eikonal S-matrix operator
@ Q: unitary operator that (perturbatively) diagonalizes the QCD Hamiltonian.

The quark pair production cross section can be written as
do _ g8
d?]l d2p d’l72 d2q n (27r)
x tr{[r* = S()Se(20)r L@ = SE () SF(2)r SE(z2)] |
x tr {[r — SP(R)Se ()P SHWIr — S3(7)Se(m)7?SL(z2)] |
- ¢4(X7y7>_<7}7;21722721722327 w; P; q)
%t {[r° = SP)SF() T SHEN - SE()Sr ()75 (z2)]

5 [ 5 COOPRI DTN [@alcyiz 2 )07, 7i 2 22 0)

% [ — SER)SH(R)PSHMNI — S 7)Se(2)r SHZ)] } ]

To get the quark pair density set each S-matrix to zero!

e



Quark contribution to the wave function (3)

The amplitudes:
1 * .
®a(k, p) = fo do‘fqzslsz bs1,5(k, P, q; ) ¢51,52(kap7 q; )

T T _ 1 dad
¢4(k7 /7 k7 I' P, q) - 251 $,51,% fO (3+Eenrn2)(aﬁ+aen2*n1)
x fﬁc‘; ¢5152(k7 P; ﬁ; Oé) ¢§1§2(l;7 q, (7; ﬁ) ¢:1§2(l7 P; C_’; B) ¢§152(l_7 q, 5; a)

Two different contributions to the wave function:
(*.p1)

(ar k) (art ki) (ap*sks)

(v + 30t o —qu+p2)
(2p* kL —p1)

(" +2p* kL —pL +a1)
e

(*,q91)

(@ ) (%)
(%(I+-Rl’(li> (%f-fc,ﬂu)
¢2¢2 ¢4

e ;.



Quark pair density in the projectile wave function (1)

®,d, contribution after contracting the color charge densities:

Correlated O(N?
Uncorrelated O(N#) orrelated O(N;) Correlated O(N?)
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Quark pair density in the projectile wave function (2)

&, contribution after contracting the color charge densities:

Correlated O(N,)
(®4) Correlated O(N2) (®F) Correlated O(N3)

In the large Nc-limit, the only contribution to the correlated quark pair density
comes from two diagrams of ®4.

e



Quark pair density in the projectile wave function (3)

The leading N, contribution to the correlated quark pair density in the projectile
wave function is given by

dNP(p,q;m 772)] / 2 T b1y d (T T bc d
L =— K)p(k)p®(DNp® (1)) ©a(k, I, k, I; p, q) tr{r?T°1T
| [ (0 (067 D) 0a(k . R op) )

@ Adopt MV model for the averaging over the color charges:

(P (K)E(p)) = (2m)212(K) 0 6 (k + p)

o For k? > Q2: u2(k) — p®  For k — 0: (k) — 0.
@ estimate the results in the following kinematics:
(i) rapidity difference between the quarks is relatively large: 73 — o > 1
(ii) the two transverse momenta to be of the same order and much larger than
saturation momentum: |p| ~ |g| > Qs
@ with this estimate answer the basic questions:
(i) what is the sign of the correlation?
(i) how far in rapidity difference does it extend?

e



Quark pair density and Pauli blocking

The final result:

[dNP(Fn gm, 772)}

4 873 2 )
_ ue g°N2 |25 p
Ppd2qdmdi | o e (i — 1) < {—‘74[’71 —m+In Q_g} 5@ (q-p)

correlated P4 q4 4 2

2 2 2 2 2 2 2 2

p°+q°) [5p°q" —3(p-q)°—(P°+q°)p-q —
5 ) [ ( Z ( )p-al (p L) PTG S
(qu) Qs

@ the correlated contribution is negative! confirms our expectation based on the
physics of the Pauli blocking

+ 7

@ the correlation is formally short range in rapidity since it decreases
exponentially as a function of the rapidity difference.

@ Note that the rate of the decrease in rapidity is tampered by the fourth power

of n1 — 12, so that in practical terms the correlation may extend fairly far in
rapidity.
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Particle production and Pauli blocking

We have already the expression for the quark pair production cross section:

do _ g8
dm d?pdnad?q — (27)°

x e {[7° = SE()Se(21)7°SHEIE = SE()SF(@)T°SE(z2)]

1 _ _ _ - - - -
/ _5 <pa(x)pb(x)pc(y)pd(y)>¢4(x7y7xay;21722721722;27 w;p, q)

x [ = SP(R)SEE)PSH@NIr — S3(7)S(2)7SH )]}

@ The same N, counting holds for the production cross section. No ®,®,!

[

S(x) = exp{igt?a’(x)} — Expand each S in a!

¢

a®(x) = 2 (x. )3 (v)
@ Use MV model for prpr correlator:

(03 ()4 (p)) = (272X (k)55 (k + p)

@ contract both the target and the projectile color charge densities!

e



Estimates for particle production

Kinematics:
@ rapidity difference between the quarks is relatively large: 1 — 2 > 1
@ the two transverse momenta to be of the same order and much larger than
saturation momentum: |p| ~ |q| ~ |p — q| > Qs
@ saturation momentum of the target is smaller than than that of projectile:
QT < Qs-
I
This is the regime where correlations existing in the projectile wave function are not
strongly distorted by the momentum transfer from the target.

do pAN Q%N 3
—_-— ~ —SgBNE L emm Zin ( ) —
|: d2pd2 qdmdn :| correlated & Q2 Q2 (771 n2) A2 4

{507r| ( Q! )6(2)(q,p)+ﬁ{2(p +q2)2+p2q2}|n {(p—qf]

QZA2 q* (p—q)* Q2

9Q2 q2 p2
2ot ["(3) (&)
e




@ We have shown that the underlying physics in the "glasma graph calculation”
that leads to final state correlations is Bose enhancement of the gluons in the
projectile wave function.

@ Another physical effect present in the glasma graph calculation is HBT
correlations between the gluons far separated in rapidity.

@ We have also calculated quark-quark correlated production in the CGC
approach. We find that there is a depletion of pair production at like transverse
momenta due to Pauli blocking effect.

@ Bose enhancement for gluons is long range in rapidity where as Pauli blocking
for quarks is short range in rapidity.

@ The exponential decay with rapidity difference is tempered by a factor
quadratic in rapidity difference, resulting in a dip at An ~ 2.

@ Quark-quark correlated production turns out to be parametrically O(a2N,)
realtive to gluon-gluon correlations, which for realistic values of as ~ 0.2 and
N¢ = 3 results in a mild suppression factor.
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HBT correlations from CGC

Another physical effect present in the glasma graph calculation:
Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity!
I
@ leads to a potentially observable effect in the final state mesons which may
allow a direct measurement of gluonic size of the proton.
@ It correlates gluons with same and opposite transverse momenta (in analogy
with the double ridge structure).

The diagrams that will lead to HBT correlations:

= U U

N(p—Fk) N(q—ka)
TYPE C

For translationally invariant averaging:

e TYPE B « 6@ (p — q) and TYPE C o 6@ (p + q)

Relaxing the translational invariance = the d-functions are smeared : |p4q| ~ R~!
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The standard HBT
The object of interest: ” Two particle correlation function”
dN

dpdq

C(p,9) = gnan
‘dp dq

@ consider emission of pions by a chaotic superposition of classical sources

N
J(p)=>_ %P Jo(p — pi)

i=1
@ each individual classical source is boosted by momentum p;
@ each individual classical source has a random phase ¢;

4 .
Ay e Ky <J*"i (x + %y) Jz <x - %Y)>

S0 K) = / 2(2m)3

The emission function:

where K is the total momenta of the emitted particles.

C(p, q) can be written in terms of the S(x, K).
e



Standard HBT vs gluon HBT

Standard HBT Gluon HBT
N N
Jp) = ™ dolp — pi) F0)=>_ (Uh),, ” J5(p)
i=1 i=1

o For gluon HBT: Jgb(p) = Jb(—p) since JE(x) is real!
@ For standard HBT: p is a three vector!

@ For gluon HBT: p is transverse only! [The time and longitudinal coordinate
dependence of all sources is identical = §(x*)d(x™)]

The emission function:

S(x,K) = / 2("227{)3 e Ky <ﬁ (x + %y) s (x - %y)>

For a Gaussian distribution of the sources, the correlator reads:

Clg.K)=1+

[67R2q2 + efRQKz]

1
N2 1

e



Transverse structure

N @ The projectile proton has a distribution of gluon fields

with spatial size R (the gluonic size of the proton).
® @ eikonal scattering with the target — gluon fields color
rotate : b?(x) = U?(x)bP(x)

For a nucleus with a large saturation scale Qs > R™1:
o the eikonal scattering matrix U(x) varies on the spatial scale Q.
@ = the source is color correlated only on scales of order Qs_l
@ color is decorrelated outside due to scattering.
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Properties of the gluon HBT

@ The correlation is long range in rapidity - it is equally strong when the
rapidities of the two gluons are equal or when the difference between the two
rapidities is large.

@ The correlation is symmetric under reversal of the direction of the transverse
momentum of one of the gluons. Thus ,it is strongest when the transverse

momenta of the two gluons are either parallel or antiparallel.

@ The HBT radius is of the order of the inverse gluonic size of the proton R~

@ The HBT signal dominates the correlation function (at small momentum
difference) when the number of incoherent emitters is large, Ns = QZ2R? < 1.
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HBT or Bose Enhancement?

The "glasma graph” calculation contains both type of correlations:

_dN_
Clp,q) = —24 — 1 4 Coe(p.q) + Cusr(p, q)

82
82

@ Both Cge(p. q) and Cupr(p, q) are rapidity independent!!

o Cpg (the coherent part) contribution is suppressed ~ 1/R2Q%, BUT is " wide"
in momentum space ~ e~ (P=9?/@ (and ~ e~ (PTa)*/Q}),

@ Cugt(p, q) is unsuppressed when the number of sources is large: RQQzT >1
BUT gives a narrow peak ~ e~(P=9°R* (and ~ e~(p+a)’R?),

irreducible
HBT
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Explicit expressions - 1

1

Osiss (ko pi o) = k2 [ap? + a(k — p)?

{4aak2 —[@k-p+ak- (k- p)]+2ic%k x p}

A=gttr [ {17107 (x) = o (2)] = 77 77[a” (x) — o7 (a1)]}
(

X Arerflot () —of (2] =7 o () — o (W)
x {7 [ () - "()]frf"la () —a” (1))
x {710 (7) - o (2)] - 7 70? (7) — o (2]} ]

475
aa=E0 Lo - 0(@)]0) - ()] + o) ~ a(a)llo(?) — o(2)]) |
% {{la() - a@)a(y) - a(@)] + [2(2) — a@)llaly) — alz)]) }-
475
ap=52 {(lo0) - a@llaly) — a(®)] +alx) - a(a)llaly) - a(z))}

% {([(®) ~ a(@a@) - a(2)] + [a(x) ~ a(@)lla) - a(Z)])}.
Tolga Altinoluk ~Initial state correlations and the Ridge 32,24



Explicit expressions - 2

< dkt d’k gk
rE = - s ]_‘a + al_ arp+ a
o /0 2 (2m)2 \/2|kT 32 [a' (K™, k) p(=k) + af (k™ k) p (k)]

dktd?k dptd?®p g - B
SHP9T = Z/ (2m)6 (k+)2 [di‘S(p+’ p) 7ap dh(k* = pTs k=) p*(=K) + h'c']
S

dpt d2p dkt d?k ;
SHEM = gra N /WGW = PG (K k™, p)

51,52

x [0kt K dl (ot p) L, (KT~ k) + ]

. ki pi ki — pi L. Pm  Km — Pm
i + + _ ! ! ! ! m
rs152(k 7k7p 7p) - 55152 |:2k_+ - (p_+ + kt+ — p+> + 21516 <P_+ - kT — P+

e



Explicit expressions - 3

(0]a?(k™, k) §HP&|0) gki
P8 = ! — al_
<g|6H ‘0> - (27_‘_)3/2 - 47T3/2‘k+|3/2p ( k)
- <0‘das (q+a q) JBS (p+’p)5Hpqq|0>
pqq — 1 2
(qql3H770) R
g2T;5

— a p— p—
B GETR AN

(qg13H5 99| g) — (Oldon (P*: P)ass (0", @)3HIa] (K, K)0)

(27r)9/2
2 Tos (K k pt,p)

= &Tap 832 (k+)1/2

6P (p+q—K)d(p" +q" — kT)
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Particle production and Pauli blocking

After all possible contractions at leading N, there are two types of contributions to
the production cross section:

@0 (. ENE [ dadp 12 (k) ()N (NA3(T)
A 0'9(0)6' (p— q) 16 /0 (,6’+5_e’71*772)(a+o_ce772*’71)/k,;?,/j [4T4
X tr{ {\Tl(k, 1 p; )V (k, |, p; ) + V(k, I, p; )W* (k, I, p; a)}
x [\T’(/?, I,p; B)V* (k. I, p; B) + W(k, 1, p; B)W* (k, I, p; ﬁ)} }
@&l [ dadp 2(K) 2 (KN (A2(T)
B 19 (0) 16 /0 (ﬁ + Be’h*"Z)(a + aenrm) /kJ?JJ_ 1474

x6@(k+ 1= p—k =T+ q)er{ [W(k, 1 p: ) ¥ (K, 1, pi B) + Wk, |, pi )" (k, . i )]

«
x [‘T’(R 1,q; B)V*(k,1,q; ) + W(k,1,q; B)V*(k, ], q; oc)] }

with
V(k,1,p;a) = [k + 1, pia) — ¢k, p — ;)]
\U(k,/,p; a) = [¢(k + /7 p; a) - ¢(k7p;a)]

e



