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Introduction
• Hydro is doing well as a pheno description of QGP@RHIC, @LHC 

• Task: explain why and turn it into an effective theory matching QCD

• Useful input from first principles calculations using AdS/CFT: 

A. Complete 2nd order theory (BRSSS replacing MIS) 

B. Hydro works early (“hydrodynamization”) 

C. Gradient expansions are asymptotic

• What about QCD? - Recent progress based on kinetic theory



Strong coupling picture from AdS/CFT
• Quasinormal modes 

• Damped when
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Hydrodynamization from holography
• Hydro works great even at large 

pressure anisotropies (~ 60%). 

• Effects of nonhydro modes are 
plainly visible at small times 

• “Hydrodynamization” for  

• Applicability of hydro determined 
by decay nonhydro modes

1st order hydro

⌧T ⇠ 0.7

[Jankowski et al.1411.1969]  
[Heller et al.1302.0697]  
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Hydrodynamization from kinetic theory

Boltzmann eqn, 2 collision kernels: 

• Relaxation time approximation  

• Effective kinetic theory (AMY) 

Note: 

• Hydrodynamization 

• Boring at early time

[Heller et al.1609.04803]  

Holography 
EKT 
RTA-1 
RTA-2 
Hydro

eta/s = 0.62
eta/s = 0.08

[Kurkela et al.1506.06647]  



Hydrodynamic theories

• Perfect fluid:  

• Navier Stokes:                                 

• Mueller; Israel & Stewart; BRSSS: 

• H+QNM: 

• Anisotropic hydrodynamics

Tµ⌫ = Euµu⌫ + P(E)(gµ⌫ + uµu⌫) +⇧µ⌫
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The gradient expansion
This works, because the SST can be expressed as a formal infinite series 

 
 
whose form is fixed by symmetries, and it 
 

⇧µ⌫ = �⌘�µ⌫ + ⌧⇧D(⌘�µ⌫) + . . .

• defines what we mean by transport coeffficients 

• allows comparison between different hydrodynamic theories 

• allows matching phenomenological and microscopic descriptions
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µ iuµ = �Eu⌫Definition of u:Calculated explicitly 

 in some examples

The relaxation time  
appears as a second order 

transport coefficient



Theoretical laboratory: Bjorken flow
Energy-momentum tensor: 

 
 
 
Large proper-time (gradient) expansion:  
 

Dimensionless variables: 
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Large order behaviour
The gradient expansion coefficients have been computed in some 
microscopic models with the result  

Similar calculations in hydrodynamics also lead to divergent series 

The singularities of the analytic continuation  
of the Borel transform  
 
 
 
 
contain information about nonhydro modes of  
the system.  
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Poles of Pade  
for N=4 SYM

[Heller et al.1302.0697]  



Bjorken flow in BRSSS
Evolution equation 

where 

Finite order hydrodynamics: 

 
Attractor = “resummed hydro”?

wff 0 + 4f2 +

✓
w

C⌧⇧
� 16

3

◆
f � 2w

3C⌧⇧
� 4C⌘

9C⌧⇧
+

16

9
= 0

f(w) =
2

3
+

4C⌘

9w
+

8C⌘C⌧⇧

27w2
+ . . .

[Heller, MS 1503.07514]  

Hydro 1
Hydro 2
Numerics
Attractor

C⌧⇧ = T ⌧⇧, C⌘ = ⌘/s



• The series is asymptotic 

• Single purely damped nonhydro mode, decay rate given by cut location

• Resummation ambiguity resolved by resurgence 

• Similar picture for the kinetic theory RTA model (with subleading cuts)

Different than   
 N=4 SYM!



Summary
• Holography has contributed to advancing the formulation and 

interpretation of relativistic hydrodynamics 

• Relativistic hydrodynamic theories include nonhydrodynamic modes 
which serve as a regulator for causality 

• Information about nonhydrodynamic modes is encoded in the large 
order behaviour of the gradient expansion 

• In principle, hydrodynamic theories can be engineered to match the 
gradient expansion and the nonhydrodynamic sector of a given 
microscopic theory


