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JETS IN HEAVY-ION COLLISIONS

¥ strong modiÞcations

- jet yields

- dijet energy imbalance

- intra-jet structure

- correlations

¥ hope: can be used as probes of the medium (jet 
tomography)

¥ transport coefÞcient q! and geometry L
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observables are generally complicated: a result of 
(in)elastic interactions with the underlying medium!
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observables are generally complicated: a result of 
(in)elastic interactions with the underlying medium!

interface of jets w/ medium: a multi-scale problem!

top-down approach: medium effects in presence of jets! 



K. Tywoniuk (CERN) VFQCD 07.10.2016

EVENT-SHAPE OBSERVABLES

¥ consider for the moment e+e- collisions

¥ next step: in the presence of a thermal bath

¥ t! 1: two narrow jets propagating through a cloud a 
soft gluons

¥ how is the energy ßow modiÞed?

4

QCD resummation for hadronic Þnal states 17

T ! 2
3T ! 1

Figure 3. Typical thrust values for back-to-back two-jet conÞgurations (left) and
three-jet Þnal states (right).

4.1. The thrust distribution

In order to make this exposition as pedagogical as possible, while still discussing
an observable of phenomenological relevance, we begin by considering as a concrete
example the event shape thrust [77]. The NLL resummation of thrust, and other
related event shapes, was Þrst performed in Ref. [51], which we closely follow in this
presentation.

Given a collection of Þnal-state momenta{ pi } = { (Ei , !pi )} we deÞne

T = max
!n

!
i | !pi á!n|

!
i | !pi |

= max
!n

!
i | !pi á!n|
Q

, (58)

where the second equality holds if all particles are massless, i.e.p

2
i = 0 and Q is

the center-of-mass energy of the colliding electrons. The three-vector!n = !nT that
maximizes the sum in Eq. (58) is called the thrust axis. As depicted in Fig.3, thrust
measures how uniform radiation is distributed in the event, withT ! 1 indicating an
event which is two-jet like. For convenience, the variable" = 1 " T is often introduced.

Before discussing the resummation of the thrust distribution, let us analyze its
kinematics in the presence of soft and/or collinear radiation. Let us callP!nT the plane
orthogonal to the thrust axis !nT . This plane divides the event into two hemispheres
S1 and S2. We also deÞne hemisphere momenta:

q1 =
"

i ! S1

pi = z1p + qt1 + øz1øp

q2 =
"

i ! S2

pi = z2p + qt2 + øz2øp, (59)

where p, øp are lightlike momenta. We now state two properties of the thrust axis
!nT [51], namely that no !pi lies in P!nT and that the hemisphere three-momenta
are aligned with !nT , i.e. qt1 = qt2 = 0. Note that q

2
i #= 0. Thanks to these

properties, and using energy-momentum conservation together with the above Sudakov
parametrization we have

" = 1 "
1
Q

(|!q1 á!nT | + |!q2 á!nT |) = 1 "

#

1 + 2
$

q

2
1

Q

2
+

q

2
2

Q

2

%

1. Introduction

Study of hadronization corrections to the event shapes ine+ e! annihilation became a unique
laboratory for testing QCD dynamics beyond perturbative level [1]. Being infrared and collinear
safe quantities, the event shapes (their mean values as wellas differential distributions) can
be calculated in perturbative QCD at large center-of-mass energiess ! Q2 as series in! s(Q).
Nonperturbative corrections to the event shapes are attributed to hadronization effects and they
are expecting to modify perturbative predictions by terms suppressed by powers of large scale
1/Q p with the exponent p varying for different observables.

Successful description of the hadronization effects by the phenomenological Monte-Carlo based
models indicates that in distinction with the total cross-section of e+ e! annihilation the power
corrections to the event shapes become anomalously large and for the shape variables like the
thrust and heavy mass jet they are expecting to appear at the level p = 1.

The enhancement of hadronization corrections occurs due tothe fact that the event shapes
are not completely inclusive quantities with respect to theÞnal states but rather weighted cross-
sections in which large power corrections can be attributedto an incomplete cancellation of the
contribution of soft gluons. As a consequence, the operatorproduct expansion (OPE) is not
applicable to the analysis of the event shapes and the standard identiÞcation of the exponents
p characterizing the strength of power corrections as dimensions of local composite operators
entering the OPE does not hold.

To determine the leading exponentp and also to understand the way in which nonperturba-
tive effects modify perturbative predictions one may explore instead by now standard infrared
renormalon analysis. This procedure has been successfullyapplied to the mean value of different
event shapes variables and the description of the leading 1/Q " power corrections has been given
within di fferent approaches [2]-[7]. In contrast, the hadronization corrections to the differential
event shape distributions are less understood. One of the reasons for this is that the leading
power corrections to the mean values and to the differential distributions have different form [1]:
the former are characterized by a single nonperturbative scale of dimensionp while the latter
involve the nonperturbative function of the shape variablethat one usually estimates running
the Monte-Carlo event generators.

Studying the power corrections to the event shape distributions we will follow the approach
proposed in [3]. We will mostly concentrate on the differential distribution with respect to the
thrust variable d" /dT and, particularly, in the end-point part of the spectrumT # 1.

There are few reasons for considering the regionT # 1. In contrast with the mean value
$1 " T%that gets 1/Q " power correction from the Þnal states with an arbitrary number of jets,
for the thrust distribution in the end-point region, T & 1, one has in the Þnal state only two
narrow energetic jets moving close to the light-cone directions p+ and p! (p± = Q

2 (1, 0, ± 1) and
2(p+ p! ) = Q2) in two opposite hemispheres. Denoting their invariant masses asM 2

L and M 2
R one

gets

t ! 1 " T '
M 2

R

Q2
+

M 2
L

Q2
, (1)

where for later convenience we introduced a new variablet.
Taking into account the QCD effects of collinear splitting of quark and gluons inside two

narrow jets and their interaction with soft gluon radiation one Þnds that the thrust distribution
for t & 0 depends on two infrared scales,Q2t2 and Q2t, which give rise to large both perturbative
(Sudakov) logs and power corrections. The smallest scale, (Qt)2, sets up the total energy carried

2
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MOTIVATION

¥ introduction of non-perturbative effects is important 
in the context of strong-coupling determination

¥ universality of Òshape functionÓ for many event shapes

¥ soft gluon ßow at large angles

¥ medium: 

- how does sensitivity to medium scales enter from 
Þrst principles?

- EFT approach: matching

¥ approach: Þrst principle expansion in g (resummation)
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THE ROLE OF POWER CORRECTIONS

¥ ! 0 resums PT 

- " s
nlnmt/t + power corrections 1/(Qt)k

¥ end-point region: jet mass2 ~ Q2t "  #QCD
2

- Q-independent shape function

- Þrst mom: shift of PT distribution

- higher mom: hemisphere correlations
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by soft gluons in the Þnal state and the scaleQ2t characterizes the transverse size of the jets
k2

! = O(Q2t). The power corrections to the thrust distribution are suppressed by powers of both
scales. In order to separate the leading asymptotics one keeps the smaller scaleQt Þxed and
expands the thrust distribution in powers of the larger scale Q2t

1
! tot

d!
dt

= ! 0

!

" s(Q), ln t,
1

Qt

"

+ O

!
1

Q2t

"

. (2)

In what follows we will consider only the leading term of thisexpansion,! 0. It should resums
large perturbative terms" n

s (Q) lnm t/t (m ! 2n " 1) and take into account all power corrections
of the form 1/ (Qt)n .

The structure of power corrections# 1/ (Qt)n strongly depends on the value of the thrust
variable. Away from the end-point region,t $ ! QCD /Q one may retain in! 0 only the lowest term
n = 1 and neglect the terms withn % 2 as suppressed by powers of 1/Q . It is this approximation
that one applies calculating the mean value of the thrust&t' ( ! " 1

tot
# tmax

0 dt t d!
dt , wheretmax is the

upper limit on the thrust variable that one imposes to separate the contribution of the 2-jet Þnal
state, tmax = 1

3. At the same time, in the end-point regiont = O(! QCD /Q ) all terms # (Qt)" n

become equally important and need to be resummed inside! 0 for all n.
As we will show, the leading power corrections to the thrust distribution in the end-point

region away from the small invariant jet mass limitQ2t $ ! 2
QCD

can be resummed into a non-
perturbative Q" independent function that deÞnes the shape of the distribution in the region
t = O(! QCD /Q ) and therefore is called the shape function. Then, the QCD prediction for the
leading term in (2) is given by the convolution of perturbative Sudakov spectrum with nonper-
turbative shape function. One should mention that one Þnds similar expressions considering, for
example, the large" x asymptotics of the structure function of deep inelastic scattering [8, 9] and
the end-point spectrum of the inclusive heavy meson decaysB ) #X s [10, 11, 12]. The reason
for this similarity is that in all these cases one encountersthe same physical situation when en-
ergetic narrow jet(s) is propagating in the Þnal state through the cloud of soft gluons. However
the important di " erence with the thrust distribution is that the nonperturbative functions in
the latter two cases resum power corrections on the di" erent scaleQ2t and they coincide with
well-known inclusive (light-cone) distributions.

2. Analysis of soft gluon e ! ects

At the Born level the Þnal state consists of a quark-antiquark pair and the thrust distribution
has the form

1
! tot

d!
dt

$
$
$
$
Born

= $(t) . (3)

Soft gluon radiation smeares this peak towards largert. Let us Þrst analyze separately pertur-
bative and nonperturbative contributions.

Considering the perturbative emissions of soft gluons out of two outgoing quarks one Þnds
that for t ) 0 the phase space for real soft gluons is squeezed and due to anincomplete can-
cellation between virtual and real gluon contributions theperturbative corrections to the thrust
distribution involve large Sudakov logs that can be resummed to all orders with the double

3

1
! tot (t)

d!
dt

'
! Qt

0
d" f (" ; µ)

d! PT (t � " /Q ; µ)
dt

angles depends only on the direction and total color charge of the jets. (See Sec. 4 below.)
Then, to all orders in perturbation theory, inclusive crosssections for two narrow jets in e+ e!

annihilation can be written as products of separate functions for the jets and for the soft radiation,
convoluted in the light-cone components of the soft radiation. Corrections are suppressed by
powers ofM 2

L,R /Q 2. Details of the necessary reasoning are reviewed in Ref. [17]. Here, we apply
this factorization to the limit e ! 0, Qe Þxed, identiÞed above. In this limit, the jets are narrow,
but their invariant masses are still large enough for perturbation theory to be valid, while the
soft-gluon function becomes nonperturbative.

For the heavy jet mass, we use Eqs. (6) and (8) to identify the appropriate factorized expres-
sion as

RH (! ) =
! µ

0
d"R

! µ

0
d"L f ("R, "L )

"

#

#

! "
M 2

R

Q2
"

"R

Q

$

#

#

! "
M 2

L

Q2
"

"L

Q

$%

PT

, (9)

where the subscript PT denotes the average with respect to the perturbative spectrum in Eq. (5),
in a manner we will specify below. The factorf ("R, "L ) is the nonperturbative infrared shape
function referred to above. It represents the probability density for the total soft gluon light
cone momentum components,"R and "L , in each hemisphere. The factorization of soft dynamics
implies that f ("R, "L ) does not depend on the hard scaleQ, up to corrections suppressed by 1/Q ,
although it does depend on the cut-o! µ that sets the maximal energy of particles described by
the shape function. Theµ" dependence of the shape function is compensated in (9) by that of
the perturbative contribution. (For now, we suppressµ as an argument for simplicity.)

For the thrust, we have, with the sameshape functionf ("R, "L ),

RT (t) =
! µ

0
d"R

! µ

0
d"L f ("R, "L )

"

#

#

t "
M 2

R + M 2
L

Q2
"

"R + "L

Q

$%

PT

. (10)

The shape functions in Eqs. (9) and (10) are identical precisely because of the factorization of soft
gluon emission from the jets. Note thatf ("R, "L ) is a symmetric function of the soft radiation
variables"R,L separately. BecauseRT depends only on the sum of soft momenta, we may simplify
it by introducing the function

f T (" ) =
! µ

0
d"R

! µ

0
d"L f ("R, "L ) $(" " "R " "L ) , (11)

in terms of which

RT (t) =
! µ

0
d" f T (" )

"

#

#

t "
"
Q

"
M 2

R + M 2
L

Q2

$%

PT

. (12)

Thus, the leading power corrections to the thrust give rise to an "/Q " shift of the perturbative
radiation function, just as in Eq. (1), but now averaged with the shape function f T (" ). In
contrast, the jet mass function, Eq. (9), does not have this property, unless

f ("L , "R) = f ("R) f ("L ) + " f ("L , "R) , (13)

with " f small, corresponding to independent evolution for the two hemispheres. This is not
obvious even perturbatively, however, and" f ("L , "R) is nonzero, for example, due to the decay
of an o! -shell gluon into a pair of gluons, each moving into di! erent hemispheres [18].
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HIERARCHY OF SCALES

¥ factorisation of the dijet cross-section

- hard cross section: Q 

- jet mass: MR,L~Qt1/2

- energy of soft gluons ~Qt

- new: temperature T>#QCD

¥ physically: soft gluons cannot resolve the inner 
structure of jets

- jets = Wilson lines

¥ independence of the hard scale of the collision
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Thermal contributions to event shapes

Jorge Casalderrey-Solanaa, Konrad Tywoniuk b

aRudolf Peierls Centre for Theoretical Physics, University of Oxford,
1 Keble Road, Oxford OX1 3NP, United Kingdom

bPhysics Department, Theory Unit, CERN, CH-1211 Gen«eve 23, Switzerland

Abstract

We compute the modiÞed ßow of soft gluons created in high-energye+ e! annihilation in the presence
of a thermal medium. This can be addressed in the dijet limit as a contribution to the soft function that is
responsible for power corrections to the event shapes. Concretely we calculate correlators of stress-energy
tensors in the presence of Wilson lines describing the collimated jets. When taken to null inÞnity these
insertions act as detectors of the energy ßow of the event. Thermal corrections are shown not to modify
directly the Þrst moment of the event shape distributions. Higher moments are however a! ected, and we
discuss possible phenomenological applications to heavy-ion collisions.

1. Introduction

One can study the creation and decay of a quark-gluon plasma created in the initial stages of ultra-
relativistic heavy-ion collisions in many ways.

The dynamics of the QGP often takes place in tandem with violent partonic collisions that produces
jets. These jets are often strongly modiÞed due to the presence of the plasma. This phenomenon is
usually referred to as Òjet quenchingÓ. Events with produced jets allow us to study the event from
using techniques well-known to perturbation theory. This has given rise to many developments. One can
measure how energy is taken away from the jet and distributed up to very large angles [2].

There are problems with these measurements, as they are very hard to compare directly to theoretical
calculations. Event shapes (or even jet shapes) are a well-known set of observables that historically has
played a very important role.

For the moment, let us assume that the QGP is created by a separate process that takes place
simultaneously with an e+ e! annihilation. For dijet events, where one produces two back-to-back quark
jets, the situation becomes very transparent. We will present the Þrst theoretical calculations for a wide
class of event shapes that are governed by soft gluon emissions. Our study focuses on power corrections.
This is a very appealing setup since we expect the ßow of soft momentum to be distorted due to the
presence of a thermalised medium.

This is a large job, and we will for the moment only consider the corrections to the cross section arising
at lowest, next-to-leading order in the coupling constant. This corresponds to the so-called one-gluon
approximation. In a companion paper, we will present a comprehensive description of the setup of the
calculation as well as extend our result to next-to-next-to-leading order.

This aspect has, of course, itÕs drawbacks since a realistic heavy-ion event are largely dominated by
background ßuctuations of various origin. Our study can help understanding how to disentangle thermal
correlations from random noise.

2. Setup

The jet masses scale asM 2
1 ! M 2

2 ! Q2! 2, while the ultra-soft radiation typically scales as q2
us ! Q2! 4.

For a small expansion parameter! we obtain a logarithmic separation of scales, which allows us to write
the dijet cross section in a factorised form as [3, 7, 11]

1
" 0

d2" dijet

dM 2
1 dM 2

2
= HQ (Q, µ)

! "

!"
dl+ dl ! J1(M 2

1 " Ql+ , µ)J2(M 2
2 " Ql ! , µ)S(l+ , l ! , µ) , (1)

Email addresses: jorge.casalderreysolana@physics.ox.ac.uk (Jorge Casalderrey-Solana),
konrad.tywoniuk@cern.ch (Konrad Tywoniuk)

Preprint submitted to Physics Letters B April 20, 2016

µH ! Q

µJ ! Q
"

t

µus ! Qt

T

! QCD
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THE SOFT FUNCTION

¥ hemisphere soft function: most general object

¥ permits a moment expansion (ˆ la OPE)

¥ left/right soft momentum operators deÞned with general 
energy ßow operator

8

where the soft function for hemisphere masses is deÞned as

S(l+ , l! ) =
!

X us

!

"

l+ !
!

i " R

q+
i

#

!

"

l! !
!

i " L

q!
i

#
1
Nc

tr
$

øT
%

øY T  
øn (0)Y  

n (0)
&

|Xus "#Xus |T
'
Yn (0) øY T

øn (0)
()

, (2)

where the average#. . ." is either over the vacuum or a thermal state and T [. . .] ( øT [. . .]) stands for
time (anti-time) ordering. The scaling of the (ultra-soft) momenta reads q+

i $ Q(1, " 2, " 2) and q! $
Q(" 2, 1, " 2). Finally, the ultra-soft Wilson lines

Yn (x) = P exp
*
ig

+ #

0
ds n áAa(ns + x)T a

,
, (3)

øYøn (x) = P exp
*
ig

+ #

0
ds øn áAa(øns + x) øT a

,
, (4)

where øT a = ! (T a)T , trace the trajectories of the outgoing quark and antiquark, respectively. The vectors
n and øn denote the directions of the jets. In the center of mass frame in a dijet event, they are given by
n = (1 , 0, 0, 1) and øn = (1 , 0, 0, ! 1). This is the more general form of a general class of soft functions that
can be derived taking certain convolutions with respect to the hemisphere soft function. The factorisation
of the cross section takes a similar form as eq. (1). For example, the soft function related to the thrust
distribution can be found as

ST (#, µ) =
+ #

!#
dl+ dl! !

-
# !

l+ + l!

Q

.
S(l+ , l! ) . (5)

An overview of the phenomenology of event shapes ine+ e! collisions can be found in [1].
We can substitute the sum over quanta entering into each of the hemispheres in Eq. (2) by deÞning

the momentum ßow operators, as

PR |Xus " =
!

i " R

q+
i |Xus " , (6)

PL |Xus " =
!

i " L

q!
i |Xus " , (7)

where the sum only includes quanta that propagate in the right (left) hemisphere. With the introduction
of these operators, we can move the delta-functions in eq. (2) into the expectation values, and sum over
the set of (ultra-soft) Þnal states. Then the soft function becomes

S(l+ , l! ) =
1
Nc

tr
$

øT [ øY  
øn (0)Y  

n (0)] !
/
l+ ! PR

0
!

/
l! ! PL

0
T [Yn (0) øYøn (0)]

)
. (8)

The momentum ßow operators in eqs. (6) and (7) can in turn be derived from the stress-energy tensor.
Let us recall the deÞnition of the energy ßow operator, that measures the ßow of energy in the spatial
direction e [5, 6, 7, 8],

E(e) = ( e áøe)
+ #

!#
dx! lim

x + $#
x2

+ T øeøe(x+ e + x! øe) , (9)

in a Lorentz invariant deÞnition [9, 10], where the vectors aree = (1 , e) and øe = (1 , ! e) and T øeøe(x) =
Pµ ! T

µ ! (x) is the result of acting with the projection operator P µ ! % øeµ øe!
1

(e áøe)2 on the stress-energy
tensor. Finally,

x+ %
øe áx
e áøe

, x! %
e áx
e áøe

.

The vector x can then be decomposed asxµ = ( x0, x ) = ( x+ + x! , (x+ ! x! )e). As a technical point, it is
worth mentioning that in Eq. ( 9) we take the limit x+ & ' at a Þxedx! . We will refer to this procedure
as taking the detector limit , E(e) %T øeøe(x)

2
2
dlim . Since we are interested in counting ÒasymptoticalÓ states

that reaches the detector, the stress-energy tensor is written down only for free Þelds, and is quite closely
related to the well-known Cutkosky cutting rules. The operators deÞned in eqs. (6) and (7), are then

PR / L =
1
2

+ 1

! 1
d cos$

+ 2"

0
d%wR / L ($) E($,%) , (10)

2

where the soft function for hemisphere masses is deÞned as

S(l+ , l ! ) =
!

X us

!

"

l+ !
!

i " R

q+
i

#

!

"

l ! !
!

i " L

q!
i

#
1

Nc
tr

$
øT

%
øY T  

øn (0)Y  
n (0)

&
|X us "#X us |T

'
Yn (0) øY T

øn (0)
()

, (2)

where the average#. . ." is either over the vacuum or a thermal state and T [. . .] ( øT [. . .]) stands for
time (anti-time) ordering. The scaling of the (ultra-soft) momenta reads q+

i $ Q(1, " 2, " 2) and q! $
Q(" 2, 1, " 2). Finally, the ultra-soft Wilson lines

Yn (x) = P exp
*

ig
+ #

0
ds n áAa(ns + x)Ta

,
, (3)

øYøn (x) = P exp
*

ig
+ #

0
ds øn áAa(øns + x) øTa

,
, (4)

where øTa = ! (Ta)T , trace the trajectories of the outgoing quark and antiquark, respectively. The vectors
n and øn denote the directions of the jets. In the center of mass frame in a dijet event, they are given by
n = (1 , 0, 0, 1) and øn = (1 , 0, 0, ! 1). This is the more general form of a general class of soft functions that
can be derived taking certain convolutions with respect to the hemisphere soft function. The factorisation
of the cross section takes a similar form as eq. (1). For example, the soft function related to the thrust
distribution can be found as

ST (#, µ) =
+ #

!#
dl+ dl ! !

-
# !

l+ + l !

Q

.
S(l+ , l ! ) . (5)

An overview of the phenomenology of event shapes ine+ e! collisions can be found in [1].
We can substitute the sum over quanta entering into each of the hemispheres in Eq. (2) by deÞning

the momentum ßow operators, as

PR |X us " =
!

i " R

q+
i |X us " , (6)

PL |X us " =
!

i " L

q!
i |X us " , (7)

where the sum only includes quanta that propagate in the right (left) hemisphere. With the introduction
of these operators, we can move the delta-functions in eq. (2) into the expectation values, and sum over
the set of (ultra-soft) Þnal states. Then the soft function becomes

S(l+ , l ! ) =
1

Nc
tr

$
øT [ øY  

øn (0)Y  
n (0)] !

/
l+ ! PR

0
!

/
l ! ! PL

0
T [Yn (0) øYøn (0)]

)
. (8)

The momentum ßow operators in eqs. (6) and (7) can in turn be derived from the stress-energy tensor.
Let us recall the deÞnition of the energy ßow operator, that measures the ßow of energy in the spatial
direction e [5, 6, 7, 8],

E(e) = ( eáøe)
+ #

!#
dx! lim

x + $#
x2

+ T øeøe(x+ e+ x! øe) , (9)

in a Lorentz invariant deÞnition [9, 10], where the vectors aree = (1 , e) and øe = (1 , ! e) and T øeøe(x) =
Pµ! Tµ ! (x) is the result of acting with the projection operator Pµ! % øeµ øe!

1
(e áøe)2 on the stress-energy

tensor. Finally,

x+ %
øeáx
eáøe

, x! %
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eáøe

.

The vector x can then be decomposed asxµ = ( x0, x ) = ( x+ + x! , (x+ ! x! )e). As a technical point, it is
worth mentioning that in Eq. ( 9) we take the limit x+ & ' at a Þxedx! . We will refer to this procedure
as taking the detector limit , E(e) % T øeøe(x)

2
2
dlim . Since we are interested in counting ÒasymptoticalÓ states
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Tµ ! (x+ e+ x" ē)
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Figure 1: Illustration of the Schwinger-Keldysh contour for fields in thermal equilibrium. The stress-energy insertion is

taken at the rightmost part of the contour, due to the procedure of the detector limit.

where wR / L (! ) ! ! (± cos! )(1 " cos! ) is the weight function. DeÞning the generalN -point correlator

G(e1, . . . , eN ) ! # E(e1) . . . E(eN )$Y , (11)

we can immediately write down the generic moment of the hemisphere soft function to be given by,
! !

0
dl+

! !

0
dl " l+ N

l " M
S

"
l+ , l " #

! # PR
N PL

M $

=
! N + M$

j =1

d3ej " (e2
j %1)

N$

n =1

wR (en )
M$

m =1

wL (em ) G(e1, . . . , eN + M ) . (12)

We will not presently discuss the possible thermal contributions to the zeroth moment. Due to the
isotropy of the thermal distribution, #T øeøe$= 0, which should also hold for all higher-order correlations.

In order to keep track of the analytical structure of these correlators (including all cuts), it will be
convenient to work with the Schwinger-Keldysh Òin-inÓ formalism. We will therefore denote all (complex-
conjugate) Þelds in the (complex-conjugate) amplitude by (A2) A1, respectively. These Þelds live on the
(lower) upper branch of the Schwinger-Keldysh time contour, see, e.g., [18]. Since they live on separate
time-branches, we can unify the time (anti-time) ordering operators appearing in eq. (2) to a common
time-contour operator. Furthermore, since the stress-energy insertion will be shifted to inÞnity when
taking the detector limit, eq. ( 9), it is shifted to the right-most part of the time-contour, see Fig. 1. In
a Þnal step, we introduce the Keldysh basis [20], where we deÞne the new Þelds to beA = ( A1 + A2)/ 2
and # = A1 %A2.1 The relevant interaction Lagrangian for this system can be found, e.g., in [22].

After performing these steps, the relevant correlators are given by

Cµ 1 ! 1 ...µ n ! n (x1, . . . , xn ) = #Tc { Tµ 1 ! 1
SK (x1) . . . Tµ n ! n

SK (xn )Wn øn (0)} $, (13)

where Tc is the time-contour ordering operator and Wn øn (0) = N " 1
c tr

%øUT
øn (0)Un (0)

&
, with

Un (0) = Pc exp
'

ig
! !

0
dt [n áAa

1(nt ) %n áAa
2(nt )] Ta

(
(14)

øUøn (0) = Pc exp
'

ig
! !

0
dt [øn áAa

1(ønt ) % øn áAa
2(ønt )] øTa

(
. (15)

The additional path ordering condition does not simply allow to substitute the argument of the exponents
directly. Rather, the proof of exponentiation is rather cumbersome [21], and we will come back to this
discussion in the subsequent paper. Since our study only involvesO(g2) contributions, it su " ces to show
that the Wilson line product at lowest order is

W (2)
n øn (0) =

(ig)2

2Nc
tr

%
TaTb&!

d4k
(2$)4

!
d4k#

(2$)4 J á#a(k)J á#b(k#) , (16)

1
The advantages of this basis in thermal field theory are several. In particular, the only relevant propagators are

D ra (x1 ! x2) " # ! (x1)A (x2)$, where D ra = D R is the scalar, retarded propagator, and D rr (x1 ! x2) " # A (x1)A (x2)$
is the only component where the thermal distribution enters. In momentum space, D ra (k) = i/ (k2

+ i sgn(k0
)0

+
) and

D rr (k) = coth(|k |/ (2T ))"# (k2
)

3

Wn øn (0) = N ! 1
c tr

�
ŪT

øn (0)Un (0)
 

For dijets:
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Figure 1: Illustration of the Schwinger-Keldysh contour for fields in thermal equilibrium. The stress-energy insertion is

taken at the rightmost part of the contour, due to the procedure of the detector limit.
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We will not presently discuss the possible thermal contributions to the zeroth moment. Due to the
isotropy of the thermal distribution, #T øeøe$= 0, which should also hold for all higher-order correlations.

In order to keep track of the analytical structure of these correlators (including all cuts), it will be
convenient to work with the Schwinger-Keldysh Òin-inÓ formalism. We will therefore denote all (complex-
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For dijets:

with øTa = ! (Ta)T , were expanded up toO(g4) order in the previous section.
The Wilson line product at second order is

W (2)
n øn (0) =

1
Nc

tr
! "

øU(1)
øn

#T
U(1)

n +
"

øU(2)
øn

#T
+ U(2)

n

$

=
(ig)2

2Nc
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%
TaTb&' !

0
dt1dt2

(
! a

n (t1)! a
n (t2) + ! a

øn (t1)! b
øn (t2) ! 2! a

n (t1)! b
øn (t2)

)
. (87)

After making use of the symmetry in the simultaneous change of colour indices and time variables in the
last term, we can rewrite the term as

W (2)
n øn (0) = ( ig)2 " ab

22Nc

' !

0
dt1dt1

*
! a

n (t1) ! ! a
øn (t2)

+*
! a

n (t2) ! ! a
øn (t2)

+
. (88)

At higher orders, we have

W (3)
n øn (0) = ( ig)3

' !

0
dt1dt2dt3

, if abc

Nc

1
2

! 12
*
! a

n (t1)A b
n (t2) ! ! a

øn (t1)A b
øn (t2)

+*
! c

n (t3) ! ! c
øn (t3)

+

+
dabc
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1
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! a

n (t1) ! ! a
øn (t1)

+*
! b

n (t2) ! ! b
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+*
! c

n (t3) ! ! c
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+-
, (89)

and, Þnally,

W (4)
n øn (0) = ( ig)4
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dt1dt2dt3dt4

.

" abcd
(1)

, 1
2

! 123
*
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where

" abcd
(1) =

if abeif ecd

Nc
, " abcd

(2) =
if abedecd

Nc
, " abcd

(3) =
1

Nc

0
2

Nc
" ab" cd + dabedecd

1
. (91)

2.3.1 Fourier transforming the currents

After Fourier transforming the Þelds, ! (x) =
2

d4k/ (2#)4 exp[! ik áx]! (k), we get

W (2)
n øn (0) =

(ig)2

2Nc
tr

%
TaTb&'

d4k
(2#)4

'
d4k"

(2#)4 J á ! a(k)J á ! b(k") , (92)

where the classical current is

J µ (k) = ! i
0

nµ

n ák ! i$
!

ønµ

øn ák ! i$

1
. (93)

Note that J µ (! k) = J #µ (k). Also, the current is conserved,kµ J µ (k) = O($).
The third order expansion follows the same logic and is given by

W (3)
n øn (0) = ( ig)3

'
d4(ka, kb, kc)

(2#)4

3
dabc

4Nc

1
3!

J á ! a(ka)J á ! b(kb)J á ! c(kc)

+
if abc

2Nc
J á ! a(ka) I µ ! (kb, kc)! b

µ (kb)Ac(kc)
4

, (94)

10
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Figure 1: Illustration of the Schwinger-Keldysh contour for fields in thermal equilibrium. The stress-energy insertion is

taken at the rightmost part of the contour, due to the procedure of the detector limit.
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In order to keep track of the analytical structure of these correlators (including all cuts), it will be
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After making use of the symmetry in the simultaneous change of colour indices and time variables in the
last term, we can rewrite the term as

W (2)
n øn (0) = ( ig)2 " ab

22Nc

' !

0
dt1dt1

*
! a

n (t1) ! ! a
øn (t2)

+*
! a

n (t2) ! ! a
øn (t2)

+
. (88)

At higher orders, we have

W (3)
n øn (0) = ( ig)3
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0
dt1dt2dt3
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! 12
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and, Þnally,
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where

" abcd
(1) =

if abeif ecd

Nc
, " abcd

(2) =
if abedecd

Nc
, " abcd

(3) =
1

Nc

0
2

Nc
" ab" cd + dabedecd

1
. (91)

2.3.1 Fourier transforming the currents

After Fourier transforming the Þelds, ! (x) =
2

d4k/ (2#)4 exp[! ik áx]! (k), we get

W (2)
n øn (0) =

(ig)2

2Nc
tr

%
TaTb&'

d4k
(2#)4

'
d4k"

(2#)4 J á ! a(k)J á ! b(k") , (92)

where the classical current is

J µ (k) = ! i
0

nµ

n ák ! i$
!

ønµ

øn ák ! i$

1
. (93)

Note that J µ (! k) = J #µ (k). Also, the current is conserved,kµ J µ (k) = O($).
The third order expansion follows the same logic and is given by

W (3)
n øn (0) = ( ig)3

'
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(2#)4

3
dabc

4Nc

1
3!
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+
if abc

2Nc
J á ! a(ka) I µ ! (kb, kc)! b

µ (kb)Ac(kc)
4

, (94)

10

Éinteresting structure emerges!
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2 Expansion of the path-ordered Wilson line

We consider a generic Wilson line that runs along the Schwinger-Keldysh contour,

Un (0) = Pc exp
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" !

0
dt [n áAa

1(nt ) ! n áAa
2(nt )] Ta

#
, (30)

where A1(2) are the Þelds living on the uppder (lower) branch of the Schwinger-Keldysh contour, and

expand in the coupling constant,Un (0) =
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k gk U(k )
n (0), where

U(k)
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i k

k!

k%

j =1

"
dt j u(k )
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We will now consider the Keldysh basis

A(t) "
1
2

(A1(t) + A2(t)) (32)

! (t) " A1(t) ! A2(t) , (33)

where we will also deÞne ÷! = ! / 2, such that A1(t) = A(t) + ÷! (t) and A2(t) = A(t) ! ÷! (t). Let us also
introduce the shorthand notation A i (t) " n áAa

i (nt )Ta with i = 1 , 2. In the Keldysh basis we will also
employ the shorthand A i " n á Aa(nt i )Ta and ! i " n á! a(nt i )Ta where now the indexi labels the time.

The expansion in terms of the functionsun goes as follows
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where ! i 1 ,...,i n " ! (t i 1 ! t i 2 ) á á á! (t i n ! 1 ! t i n ). The path-ordering operator orders the Þelds along the
Schwinger-Keldysh contour, imposing time (anti-time) ordering on the upper (lower) branch.

Finally, the factors Ti 1 ,...,i n are fully nested commutator and anti-commutator combinations of the
ÞeldsA and ÷! , and can be found by the following iterative procedure,

T1,...,n = T1,...,n # 1 # Kn , (36)

= T1 # K2 # . . . # Kn , (37)

where T1 = ÷! 1 and

Ki " [¥, A i ] + {¥, ÷! i } . (38)

Recall that we have
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Ta, Tb,
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Ta, Tb)
=

1
3

" ab + dabcTc , (40)

where Ta are the colour generator matrices and should not be confused with the time-ordered operators
above. For the complex-conjugate generators, the following identities can be proven
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&øTa, øTb)
=

1
3

" ab ! dabc øTc , (42)

which allows us to deÞneøf abc = f abc and ødabc = ! dabc.
Then, Þnally, Þrst order term reads

u(1) (t1) =
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dt1 ! a
1 Ta . (43)
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T1 = ! 1/ 2with initial condition: 

KT, Casalderrey-Solana, Pablos (2016, in preparation)

¥ ! Kn " [¥, A i] + {¥, ⌘i/ 2}ÒrotationÓ operator
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A1 Þelds

A2 Þelds

Tµ" insertions

t

Figure 1: Illustration of the Schwinger-Keldysh contour for fields in thermal equilibrium. The stress-energy insertion is

taken at the rightmost part of the contour, due to the procedure of the detector limit.

where wR / L (! ) ! ! (± cos! )(1 " cos! ) is the weight function. DeÞning the generalN -point correlator

G(e1, . . . , eN ) ! # E(e1) . . . E(eN )$Y , (11)

we can immediately write down the generic moment of the hemisphere soft function to be given by,
! !

0
dl+

! !

0
dl " l+ N

l " M
S

"
l+ , l " #

! # PR
N PL

M $

=
! N + M$

j =1

d3ej " (e2
j %1)

N$

n =1

wR (en )
M$

m =1

wL (em ) G(e1, . . . , eN + M ) . (12)

We will not presently discuss the possible thermal contributions to the zeroth moment. Due to the
isotropy of the thermal distribution, #T øeøe$= 0, which should also hold for all higher-order correlations.

In order to keep track of the analytical structure of these correlators (including all cuts), it will be
convenient to work with the Schwinger-Keldysh Òin-inÓ formalism. We will therefore denote all (complex-
conjugate) Þelds in the (complex-conjugate) amplitude by (A2) A1, respectively. These Þelds live on the
(lower) upper branch of the Schwinger-Keldysh time contour, see, e.g., [18]. Since they live on separate
time-branches, we can unify the time (anti-time) ordering operators appearing in eq. (2) to a common
time-contour operator. Furthermore, since the stress-energy insertion will be shifted to inÞnity when
taking the detector limit, eq. ( 9), it is shifted to the right-most part of the time-contour, see Fig. 1. In
a Þnal step, we introduce the Keldysh basis [20], where we deÞne the new Þelds to beA = ( A1 + A2)/ 2
and # = A1 %A2.1 The relevant interaction Lagrangian for this system can be found, e.g., in [22].

After performing these steps, the relevant correlators are given by

Cµ 1 ! 1 ...µ n ! n (x1, . . . , xn ) = #Tc { Tµ 1 ! 1
SK (x1) . . . Tµ n ! n

SK (xn )Wn øn (0)} $, (13)

where Tc is the time-contour ordering operator and Wn øn (0) = N " 1
c tr

%øUT
øn (0)Un (0)

&
, with

Un (0) = Pc exp
'

ig
! !

0
dt [n áAa

1(nt ) %n áAa
2(nt )] Ta

(
(14)

øUøn (0) = Pc exp
'

ig
! !

0
dt [øn áAa

1(ønt ) % øn áAa
2(ønt )] øTa

(
. (15)

The additional path ordering condition does not simply allow to substitute the argument of the exponents
directly. Rather, the proof of exponentiation is rather cumbersome [21], and we will come back to this
discussion in the subsequent paper. Since our study only involvesO(g2) contributions, it su " ces to show
that the Wilson line product at lowest order is

W (2)
n øn (0) =

(ig)2

2Nc
tr

%
TaTb&!

d4k
(2$)4

!
d4k#

(2$)4 J á#a(k)J á#b(k#) , (16)

1
The advantages of this basis in thermal field theory are several. In particular, the only relevant propagators are

D ra (x1 ! x2) " # ! (x1)A (x2)$, where D ra = D R is the scalar, retarded propagator, and D rr (x1 ! x2) " # A (x1)A (x2)$
is the only component where the thermal distribution enters. In momentum space, D ra (k) = i/ (k2

+ i sgn(k0
)0

+
) and

D rr (k) = coth(|k |/ (2T ))"# (k2
)

3
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T ! 2
3T ! 1

Figure 3. Typical thrust values for back-to-back two-jet conÞgurations (left) and
three-jet Þnal states (right).

4.1. The thrust distribution

In order to make this exposition as pedagogical as possible, while still discussing
an observable of phenomenological relevance, we begin by considering as a concrete
example the event shape thrust [77]. The NLL resummation of thrust, and other
related event shapes, was Þrst performed in Ref. [51], which we closely follow in this
presentation.

Given a collection of Þnal-state momenta{ pi } = { (Ei , !pi )} we deÞne

T = max
!n

!
i | !pi á!n|

!
i | !pi |

= max
!n

!
i | !pi á!n|
Q

, (58)

where the second equality holds if all particles are massless, i.e.p

2
i = 0 and Q is

the center-of-mass energy of the colliding electrons. The three-vector!n = !nT that
maximizes the sum in Eq. (58) is called the thrust axis. As depicted in Fig.3, thrust
measures how uniform radiation is distributed in the event, withT ! 1 indicating an
event which is two-jet like. For convenience, the variable" = 1 " T is often introduced.

Before discussing the resummation of the thrust distribution, let us analyze its
kinematics in the presence of soft and/or collinear radiation. Let us callP!nT the plane
orthogonal to the thrust axis !nT . This plane divides the event into two hemispheres
S1 and S2. We also deÞne hemisphere momenta:

q1 =
"

i ! S1

pi = z1p + qt1 + øz1øp

q2 =
"

i ! S2

pi = z2p + qt2 + øz2øp, (59)

where p, øp are lightlike momenta. We now state two properties of the thrust axis
!nT [51], namely that no !pi lies in P!nT and that the hemisphere three-momenta
are aligned with !nT , i.e. qt1 = qt2 = 0. Note that q

2
i #= 0. Thanks to these

properties, and using energy-momentum conservation together with the above Sudakov
parametrization we have

" = 1 "
1
Q

(|!q1 á!nT | + |!q2 á!nT |) = 1 "

#

1 + 2
$

q

2
1

Q

2
+

q

2
2

Q

2

%

!x 1

!

!

!

!

x 2

x 3

x 4

x 5
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study the correlation of stress-energy 
insertions Ñ all cumulant structure

allows to specify what modes reach the 
detector

systematic expansion in g

where the soft function for hemisphere masses is deÞned as

S(l+, l ! ) =
!

X us

!

"

l+ !
!

i " R

q+i

#

!

"

l ! !
!

i " L

q!
i

#
1

Nc
tr

$
øT

%
øYT 

n̄ (0)Y  
n (0)

&
|X us "#X us |T

'
Yn (0) øYT

n̄ (0)
()

, (2)

where the average#. . ." is either over the vacuum or a thermal state and T [. . .] ( øT [. . .]) stands for
time (anti-time) ordering. The scaling of the (ultra-soft) momenta reads q+i $ Q(1, " 2, " 2) and q! $
Q(" 2, 1, " 2). Finally, the ultra-soft Wilson lines

Yn (x) = P exp
*

ig
+ #

0

ds n áAa(ns + x)Ta
,

, (3)

øYn̄ (x) = P exp
*

ig
+ #

0

ds øn áAa(øns + x) øTa
,

, (4)

where øTa = ! (Ta)T, trace the trajectories of the outgoing quark and antiquark, respectively. The vectors
n and øn denote the directions of the jets. In the center of mass frame in a dijet event, they are given by
n = (1 , 0, 0, 1) and øn = (1 , 0, 0, ! 1). This is the more general form of a general class of soft functions that
can be derived taking certain convolutions with respect to the hemisphere soft function. The factorisation
of the cross section takes a similar form as eq. (1). For example, the soft function related to the thrust
distribution can be found as

ST (#, µ) =
+ #

!#
dl+dl ! !

-
# !

l+ + l !

Q

.
S(l+, l ! ) . (5)

An overview of the phenomenology of event shapes ine+e! collisions can be found in [1].
We can substitute the sum over quanta entering into each of the hemispheres in Eq. (2) by deÞning

the momentum ßow operators, as

P
R

|X us " =
!

i " R

q+i |X us " , (6)

P
L

|X us " =
!

i " L

q!
i |X us " , (7)

where the sum only includes quanta that propagate in the right (left) hemisphere. With the introduction
of these operators, we can move the delta-functions in eq. (2) into the expectation values, and sum over
the set of (ultra-soft) Þnal states. Then the soft function becomes

S(l+, l ! ) =
1

Nc
tr

$
øT [ øY  

n̄ (0)Y  
n (0)] !

/
l+ ! P

R
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The momentum ßow operators in eqs. (6) and (7) can in turn be derived from the stress-energy tensor.
Let us recall the deÞnition of the energy ßow operator, that measures the ßow of energy in the spatial
direction e [5, 6, 7, 8],

E(e) = ( eáøe)
+ #

!#
dx! lim

x + $#
x2

+

Tēē(x
+

e+ x! øe) , (9)

in a Lorentz invariant deÞnition [9, 10], where the vectors aree = (1 , e) and øe = (1 , ! e) and Tēē(x) =
Pµ! Tµ ! (x) is the result of acting with the projection operator Pµ! % øeµ øe!

1
(e áøe)2 on the stress-energy

tensor. Finally,

x
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%
øeáx
eáøe

, x! %
eáx
eáøe

.

The vector x can then be decomposed asxµ = ( x0, x ) = ( x
+

+ x! , (x
+

! x! )e). As a technical point, it is
worth mentioning that in Eq. ( 9) we take the limit x

+

& ' at a Þxedx! . We will refer to this procedure
as taking the detector limit , E(e) % Tēē(x)

2
2
dlim

. Since we are interested in counting ÒasymptoticalÓ states
that reaches the detector, the stress-energy tensor is written down only for free Þelds, and is quite closely
related to the well-known Cutkosky cutting rules. The operators deÞned in eqs. (6) and (7), are then

PR / L =
1
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+
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+
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Figure 1: Illustration of the Schwinger-Keldysh contour for fields in thermal equilibrium. The stress-energy insertion is

taken at the rightmost part of the contour, due to the procedure of the detector limit.

where wR / L (! ) ! ! (± cos! )(1 " cos! ) is the weight function. DeÞning the generalN -point correlator

G(e1, . . . , eN ) ! # E(e1) . . . E(eN )$Y , (11)

we can immediately write down the generic moment of the hemisphere soft function to be given by,
! !

0
dl+
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0
dl " l+ N

l " M
S

"
l+ , l " #

! # PR
N PL

M $

=
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d3ej " (e2
j %1)

N$

n =1

wR (en )
M$

m =1

wL (em ) G(e1, . . . , eN + M ) . (12)

We will not presently discuss the possible thermal contributions to the zeroth moment. Due to the
isotropy of the thermal distribution, #T øeøe$= 0, which should also hold for all higher-order correlations.

In order to keep track of the analytical structure of these correlators (including all cuts), it will be
convenient to work with the Schwinger-Keldysh Òin-inÓ formalism. We will therefore denote all (complex-
conjugate) Þelds in the (complex-conjugate) amplitude by (A2) A1, respectively. These Þelds live on the
(lower) upper branch of the Schwinger-Keldysh time contour, see, e.g., [18]. Since they live on separate
time-branches, we can unify the time (anti-time) ordering operators appearing in eq. (2) to a common
time-contour operator. Furthermore, since the stress-energy insertion will be shifted to inÞnity when
taking the detector limit, eq. ( 9), it is shifted to the right-most part of the time-contour, see Fig. 1. In
a Þnal step, we introduce the Keldysh basis [20], where we deÞne the new Þelds to beA = ( A1 + A2)/ 2
and # = A1 %A2.1 The relevant interaction Lagrangian for this system can be found, e.g., in [22].

After performing these steps, the relevant correlators are given by

Cµ 1 ! 1 ...µ n ! n (x1, . . . , xn ) = #Tc { Tµ 1 ! 1
SK (x1) . . . Tµ n ! n

SK (xn )Wn øn (0)} $, (13)

where Tc is the time-contour ordering operator and Wn øn (0) = N " 1
c tr
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&
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2(nt )] Ta
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'

ig
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0
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1(ønt ) % øn áAa
2(ønt )] øTa

(
. (15)

The additional path ordering condition does not simply allow to substitute the argument of the exponents
directly. Rather, the proof of exponentiation is rather cumbersome [21], and we will come back to this
discussion in the subsequent paper. Since our study only involvesO(g2) contributions, it su " ces to show
that the Wilson line product at lowest order is

W (2)
n øn (0) =

(ig)2

2Nc
tr

%
TaTb&!

d4k
(2$)4

!
d4k#

(2$)4 J á#a(k)J á#b(k#) , (16)

1
The advantages of this basis in thermal field theory are several. In particular, the only relevant propagators are

D ra (x1 ! x2) " # ! (x1)A (x2)$, where D ra = D R is the scalar, retarded propagator, and D rr (x1 ! x2) " # A (x1)A (x2)$
is the only component where the thermal distribution enters. In momentum space, D ra (k) = i/ (k2

+ i sgn(k0
)0

+
) and

D rr (k) = coth(|k |/ (2T ))"# (k2
)
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t

Figure 1: Illustration of the Schwinger-Keldysh contour for Þelds in thermal equilibrium. The stress-energy insertion is
taken at the rightmost part of the contour, due to the procedure of the detector limit.
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We will not presently discuss the possible thermal contributions to the zeroth moment. Due to the
isotropy of the thermal distribution, #T øeøe$= 0, which should also hold for all higher-order correlations.

In order to keep track of the analytical structure of these correlators (including all cuts), it will be
convenient to work with the Schwinger-Keldysh Òin-inÓ formalism. We will therefore denote all (complex-
conjugate) Þelds in the (complex-conjugate) amplitude by (A2) A1, respectively. These Þelds live on the
(lower) upper branch of the Schwinger-Keldysh time contour, see, e.g., [18]. Since they live on separate
time-branches, we can unify the time (anti-time) ordering operators appearing in eq. (2) to a common
time-contour operator. Furthermore, since the stress-energy insertion will be shifted to inÞnity when
taking the detector limit, eq. ( 9), it is shifted to the right-most part of the time-contour, see Fig. 1. In
a Þnal step, we introduce the Keldysh basis [20], where we deÞne the new Þelds to beA = ( A1 + A2)/ 2
and # = A1 %A2.1 The relevant interaction Lagrangian for this system can be found, e.g., in [22].

After performing these steps, the relevant correlators are given by
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The additional path ordering condition does not simply allow to substitute the argument of the exponents
directly. Rather, the proof of exponentiation is rather cumbersome [21], and we will come back to this
discussion in the subsequent paper. Since our study only involvesO(g2) contributions, it su " ces to show
that the Wilson line product at lowest order is
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1The advantages of this basis in thermal Þeld theory are several. In particular, the only relevant propagators are
D ra (x1 ! x2) " # ! (x1)A (x2)$, where D ra = D R is the scalar, retarded propagator, and D rr (x1 ! x2) " # A (x1)A (x2)$
is the only component where the thermal distribution enters. In momentum space, D ra (k) = i/ (k2 + i sgn(k0)0+ ) and
D rr (k) = coth( |k |/ (2T )) "# (k2)
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- including higher-order 
correction to get running " s
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SECOND MOMENT: MEDIUM

¥ Þrst medium contribution at g2

- on-shell thermal ßuctuations

¥ rapidity dependence: effective 
temperature Teff(&) = T/cosh(&)

¥ no correlation between 
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- expected to appear at O(g4)
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MOMENT RESUMMATION

¥ O(g2): cumulants = moments

¥ ÔtubeÕ/string model with aPT#3

- boost-inv. rapidity density of gluons 

- NP gluon density not modiÞed in 
medium!

¥ broadening of the distribution
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Figure 3: Lowest, non-vanishing order contribution to the second moment.

where ! (2) (ö
q ! e) " ! (cos"q ! cos" )! (#q ! #). It is purely vacuum and can be rewritten as,

G(e) =
g2CF

8$3

1
sin2 "

!
d%, (25)

=
1

4$
1

sin3 "

! µ 2

0
dk2 |k|&(k2) , (26)

where we have introduced an explicit UV regulator and absorbed the coupling into the deÞned the density

&(k2) "
' s(k2)CF

$k2 . (27)

This expression corresponds to Eq. (19) in [8]. This gluon density is also related to the universal cusp
anomalous dimension by&(k2) = ! cusp (k2)/ k2.

3.2. Higher-order moments

Medium e" ects enter at O(g2) through the second moment, related to the ßow operatorG(e1, e2).
The only diagram that contributes is given in Fig. 3, and is given by a proper projection of the tensor in
Eq. (18). We write it out in detail below, prior to taking the proper projections,

Cµ 1 ! 1 µ 2 ! 2 (x1, x2) = ( ! 8)
(ig)2CF

2

!
d4(q, q!, k)

(2$4)
e" i ( " q" k )áx 1 " i (k " q! )áx 2

# Tµ 1 ! 1
"# (! q; ! k)Tµ 2 ! 2 #

$ (k; ! q!)J " (q)J $ (q!)

# Dra (! q)Drr (k)Dra (! q!) . (28)

Since the three momenta are not correlated in the propagators, we can simply put the on-shell. Next,
following the steps outlined above, we perform the detector limits for pointsx1 and x2 separately. Due
to energy-momentum conservation, this enforces that the two separate detector directions,e1 and e2, are
pointed in the same direction. After manipulations and projection, we obtain

G(e1, e2) " (e1 áøe1)(e2 áøe2) Pe1
µ 1 ! 1

Pe2
µ 2 ! 2

Cµ 1 ! 1 µ 2 ! 2 (x1, x2)
"
"
dlim (29)

= ! (2) (e1 ! e2) g2CF

!
d3q

(2$)32%q

! (2) (ö
q ! e1)
%2

q
coth

# %q

2T

$ (øe1 áq)2

(øe1 áe1)
(øe2 áq)2

(øe2 áe2)
n áøn

(n áq)(øn áq)
, (30)

= ! (2) (e1 ! e2)
1
$

1
sin4 "

! µ 2

0
dk2 |k|2&(k2) coth

%
|k|

sin" 2T

&
, (31)

where ! (2) (e1 ! e2) = ! (cos"1 ! cos"2)! (#1 ! #2) = cosh2 ( 1 ! (( 1 ! ( 2)! (#1 ! #2) and we have explicitly
written out the UV cut-o " scaleµ.

Due to the recurring structure of the cut propagator, the generalnth order term is easily guessed to
be

G(e1, . . . ,en ) =
1

4$

n'

i =2

! (2) (ei ! e1)
1

sin2+ n "

! µ 2

0
dk2 |k|n &(k2) cothn " 1

%
|k|

sin" 2T

&
. (32)

4. From moments to distributions

Since we havenÕt yet calculated the correlations between the two hemispheres, let us start by calcu-
lating S(l+ ) = $! (l+ ! PR )%. Applying a Laplace transform, we get

S(l+ ) =
!

d)
2$i

e! l +
$e" ! PR %. (33)

5

Figure 4: Thermal modiÞcation to the soft function.

We can calculate the average using the cumulant expansion!eX " = exp
! !

n =1
1
n ! !! X n "", where, e.g.,

!! 12"" = !12" # ! 1"! 2". In the one-gluon approximation, at O(g2), !! X n "" = !X n " and the sum simpliÞes
considerably.

We can now re-sum the full expression. The expectation value of the exponentiated operator reads

!e" ! PR " = exp

"
1
2

# !

0
d!

# µ 2

0
dk 2" (k 2)

!$

n =1

(# # |k |e" " )n

n!
cothn " 1

%
|k | cosh!

2T

&'

, (34)

= exp

"
1
2

# !

0
d!

# µ 2

0
dk 2 " (k 2)

coth
(
|k | cosh! / (2T)

)
%

e" ! |k |e! ! coth
(

|k | cosh " / (2T )
)

# 1
&'

. (35)

We note that the boost invariance is broken by the Þnite temperature. Usually, we can approximate the
term in the brackets in the exponent as

e" ! V (k, " ) # 1 $ # !
*
V (k, ! ) # e" #E #" 1+

, (36)

where $E is the Euler-Mascheroni constant.
In the absence of a medium (T = 0), the most striking thing about this distribution is the transition

from a 1/l + behaviour found in a leading order%s expansion, and the change of behaviour at very small
l+ , which corresponds to the# % & limit, inside the Laplace transform,

S(l+ ) $
#

d#
2&i

e! l + " aPT log ! '
*
l+ +aPT " 1

, (37)

where aPT = 1
2

, µ 2

0 dk 2" (k 2) ! 3. This causes the distribution to peak at a Þnite value ofl+ .
At Þnite temperature, the distribution gets contributions from the temperature in addition to the

usoft scaleµ.

5. Discussion and outlook
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Medium e" ects enter at O(g2) through the second moment, related to the ßow operatorG(e1, e2).
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following the steps outlined above, we perform the detector limits for pointsx1 and x2 separately. Due
to energy-momentum conservation, this enforces that the two separate detector directions,e1 and e2, are
pointed in the same direction. After manipulations and projection, we obtain
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4. From moments to distributions
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(a) ÒSelf-energyÓ diagram. (b) ÒBroadeningÓ diagram.

Figure 4: The only connected, non-vanishing diagrams contributing toCµ!
(4 ,2) (x).

correction to the vacuum emission, while the one in Fig.4b can be interpreted as a re-scattering process
in the medium which could be related to momentum Òbroadening.Ó

We deal with the average in Eq. (128) using WickÕs theorem. The relevant contractions can be found
in Eqs. (279) and (280).

After performing the contractions, and shifting the momenta so that the momentum ßowing through
the loop is k, we Þnally obtain the expressions for the two diagrams in Fig.4. The Òself-energyÓ diagram
reads

Cµ! , a
(2 ,2,0) (x) = ! 2

(ig)2

2Nc

!
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Dra (q)J #
" (q)

" iV abc,
#$%(! q!, k, q! ! k) iV cba,%$&(! q! + k, ! k, q!)

" Dra (q!) Dra (q! ! k) Drr (k) Dra (q!) J #
& (q!) , (129)

and we will rewrite it in a suggestive form, namely

Cµ! , a
(2 ,2,0) (x) = ! 2(ig)2CF

!
d4(q, q!)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Dra (q)J #
" (q)

" Dra (q!)
"

! i ! (a)
#& (q!)

#
Dra (q!) J #,& (q!) , (130)

where we see the similarity to Eq. (126). The contribution to the gluon self energy reads explicitly

! (a)
#& (q) =

i
2NcCF

!
d4k

(2! )4 iV abc,
#$%(! q!, k, q! ! k) iV cba,%$&(! q! + k, ! k, q!) Dra (q! ! k)Drr (k) , (131)

and will be treated in detail in Sec. 5.
The ÒbroadeningÓ diagram reads

Cµ! , b
(2 ,2,0) (x) = !

(ig)2

2Nc

!
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Drr (k)

" Dra (q) iV abc,
"%' (! q, k,! k + q) Dra (! k + q)J #' (! k + q)

" Dra (q!) iV abc, %
# $ (! q!, ! k, k + q!) Dra (k + q!)J #$ (k + q!) , (132)

where

Tµ!"# (q, q!) = ÷Tµ!"# (q, q!) + ÷Tµ!#" (q!, q) . (133)

We Þnd that the Wick contractions correspond to the expected diagrammatical Feynman rules. Also,
note that

Pµ! Tµ !"# (q, q!) = !
2(øe · q)(øe · q!)

(e · øe)2

$
g"# !

øe" q#

øe · q
!

øe#q!"

øe · q! +
q · q!

(øe · q)(øe · q!)
øe" øe#

%
, (134)

and is transverse with respect toq and q!. We also Þnd the symmetry

P · Tµ! (q, q!) = P · T! µ (q!, q) . (135)

This diagram will be calculated in detail in Sec. 6.1.
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Figure 5: Diagram from three independent emissions that does not contribute to theCµ⌫

(4 ,1) correlator.

(a) (b)

(c) (d)

Figure 6: Diagrams that contribute to the Cµ⌫

(3 ,1,0) correlator.

4.4 Calculation of Cµ!
(3,1,0)(x)

Presently, let us calculate one of the terms in the 4th order expansion of the correlator, with only one
three-gluon interaction vertex involved. We have that

Cµ⌫

(3 ,1,0) (x) = !Tc

!
Tµ⌫(x)W (3)

n øn (0)
"

d4x i L (3)
int (x)

#
" , (136)

whereW (3)
n øn (0) is given in Eq. (94). This correlator contains contributions from the independent emission

from three currents, depicted in Fig. 5, and from the correlation of an independent emission with a
medium-modiÞed one, see the second line in Eq. (94) and Fig. 6.

The Þrst case is a pure vacuum contribution, but these terms are proportional to

f abcdabc = 0 , (137)

due to color symmetry. The factors in the second line of Eq. (94) give rise to the diagrams in Fig. 6, and
can be expressed as

Cµ⌫

(3 ,1,0) (x) = ig4CF CA

"
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx
$

i = a,b,c,d

! µ⌫

( i ) (q, q!, k) , (138)

where

! µ⌫

(a) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q, q# k, k)J #
�

(q!)I
��

(# q + k, # k)

$ Dra (q)Dra (q!)Dra (q # k)Drr (k) , (139)

! µ⌫

(b) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��
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(# q!, k, # k + q!)J #
�

(k)I
��

(# q! + k, # q)
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! µ⌫

(c) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q!, k, # k + q!)J #
�

(q! # k)I
��

(# q,# k)

$ Dra (q)Dra (q!)Dra (q! # k)Drr (k) , (141)

! µ⌫

(d) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q!, # k + q!, k)J #
�

(k)I
��

(# q,# q! + k)

$ Drr (q!)Dra (k)Dra (q)Dar (q! # k) . (142)
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Figure 7: The only non-zero diagram from W (4)
n øn (0) contributing to the diagrams with two retarded

propagators reaching the detector (ÒdecoherenceÓ diagram).

CHECK the last expression! The two diagrams (a) and (c) have a similar structure to the correlator
Cµ! ,b

(2 ,2,0) in the sense that the ÒinternalÓ momentum (k, or q in the case of diagram (b)) does not propagate
to the detector. We then immediately Þnd that in the detector limit, the expression becomes

P áC(4,1) (x)
!
!
!
(a+ c)

lim
=

! 1
4

ig4CF CA

"
d4k

(2! )4 Drr (k)
"

d3q
(2! )32" q

#(öq ! e)
" q

[! (q; k) + ! (! q; ! k)] , (143)

where we have switched the sign ofk in the last term. Finally,

! (q; k) = Pµ! Tµ !"# (q,! q)
#
V $%

# (! q, q! k, k)J " (q)I $%(! q + k, ! k)Dra (q ! k)

+ V $%
# (q, k,! k ! q)J %(k + q)I "$ (! q,! k)Dra (k + q)

$
(144)

The simpliÞcation of the remaining diagram (b) follows the same logic. We Þnally obtain

P áC(4,1) (x)
!
!
!
(b)

lim
=

! 1
4

ig4CF CA

"
d4k

(2! )4

"
d3q

(2! )32" q

#(öq ! e)
" q

1
2

coth
%" q

2T

&
[" (q; k) ! " (! q; k)] , (145)

where

" (q; k) = Pµ! Tµ !"# (q,! q)V $%
# (q, k,! q ! k)J !

$ (k)I "%(q + k, ! q)Dra (! q ! k)Dra (k) . (146)

Note that the limit of soft ÒinternalÓ momentum in this case corresponds to" q " 0, sinceq is on-shell.
The momentum k is o#-shell. In this case,

" (q; k) # ! 2i " 2
q |J (k)|2 , (147)

which determines that there is no soft divergence proportional toT as in the previous cases.

4.5 Calculation of Cµ!
(4,0,0)(x)

There are several non-zero diagrams arising from theW (4)
n øn (0). The only one contributing to the set

of diagrams with two retarded propagators reaching the detector is drawn in Fig.7. We will call it the
ÒdecoherenceÓ contribution, as it describes the interactions of the two currents/jets before the emission. In
order to write the Feynman diagrams, we will Þrst extract the right piece from the Wilson line expansion,
the term consisting of the product of two commutators, which we put in the following form

W (4)
n øn (0)

!
!
!
cc

= ( ig)4
"

dt1dt2dt3dt4$ abcd
(1)

1
22 %12%34

$
'
$a

n (t1)A b
n (t2) ! $a

øn (t1)A b
øn (t2)

( '
$c

n (t3)A d
n (t4) ! $c

øn (t3)A d
øn (t4)

(
(148)

=
(ig)4

4
$ abcd

(1)

"
d4(k1, k2, k3k4)

(2! )4 I µ ! (k1, k2)I &$ (k3, k4)$a
µ (k1)A b

! (k2)$c
&(k3)A d

$ (k4) . (149)

Then, the correlator becomes

Ceøe
(4 ,0,0) (x) =

(ig)4

4
$ abab

(1)

"
d4(q, q", k)

(2! )4 e# i (q+ q! )áx Peøe,µ ! Tµ !"# (q, q")

$ D #&!

ra (q")D "&
ra (q)D $$ !

rr (k)I &$ (! q,! k)I &! $ ! (! q", k) . (150)

We read o# the relevant structure that plays a role in the detector limit,

&(q; q"; k) = Peøe
µ ! Tµ !"# (q, q")D $$ !

rr (k)I "$ (! q,! k)I #$ ! (! q", k) . (151)
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(a) ÒSelf-energyÓ diagram. (b) ÒBroadeningÓ diagram.

Figure 4: The only connected, non-vanishing diagrams contributing toCµ!
(4 ,2) (x).

correction to the vacuum emission, while the one in Fig.4b can be interpreted as a re-scattering process
in the medium which could be related to momentum Òbroadening.Ó

We deal with the average in Eq. (128) using WickÕs theorem. The relevant contractions can be found
in Eqs. (279) and (280).

After performing the contractions, and shifting the momenta so that the momentum ßowing through
the loop is k, we Þnally obtain the expressions for the two diagrams in Fig.4. The Òself-energyÓ diagram
reads

Cµ! , a
(2 ,2,0) (x) = ! 2

(ig)2

2Nc

!
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Dra (q)J #
" (q)

" iV abc,
#$%(! q!, k, q! ! k) iV cba,%$&(! q! + k, ! k, q!)

" Dra (q!) Dra (q! ! k) Drr (k) Dra (q!) J #
& (q!) , (129)

and we will rewrite it in a suggestive form, namely

Cµ! , a
(2 ,2,0) (x) = ! 2(ig)2CF

!
d4(q, q!)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Dra (q)J #
" (q)

" Dra (q!)
"

! i ! (a)
#& (q!)

#
Dra (q!) J #,& (q!) , (130)

where we see the similarity to Eq. (126). The contribution to the gluon self energy reads explicitly

! (a)
#& (q) =

i
2NcCF

!
d4k

(2! )4 iV abc,
#$%(! q!, k, q! ! k) iV cba,%$&(! q! + k, ! k, q!) Dra (q! ! k)Drr (k) , (131)

and will be treated in detail in Sec. 5.
The ÒbroadeningÓ diagram reads

Cµ! , b
(2 ,2,0) (x) = !

(ig)2

2Nc

!
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx Tµ !"# (q, q!)Drr (k)

" Dra (q) iV abc,
"%' (! q, k,! k + q) Dra (! k + q)J #' (! k + q)

" Dra (q!) iV abc, %
# $ (! q!, ! k, k + q!) Dra (k + q!)J #$ (k + q!) , (132)

where

Tµ!"# (q, q!) = ÷Tµ!"# (q, q!) + ÷Tµ!#" (q!, q) . (133)

We Þnd that the Wick contractions correspond to the expected diagrammatical Feynman rules. Also,
note that

Pµ! Tµ !"# (q, q!) = !
2(øe · q)(øe · q!)

(e · øe)2

$
g"# !

øe" q#

øe · q
!

øe#q!"

øe · q! +
q · q!

(øe · q)(øe · q!)
øe" øe#

%
, (134)

and is transverse with respect toq and q!. We also Þnd the symmetry

P · Tµ! (q, q!) = P · T! µ (q!, q) . (135)

This diagram will be calculated in detail in Sec. 6.1.
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Figure 5: Diagram from three independent emissions that does not contribute to theCµ⌫

(4 ,1) correlator.
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Figure 6: Diagrams that contribute to the Cµ⌫

(3 ,1,0) correlator.

4.4 Calculation of Cµ!
(3,1,0)(x)

Presently, let us calculate one of the terms in the 4th order expansion of the correlator, with only one
three-gluon interaction vertex involved. We have that

Cµ⌫

(3 ,1,0) (x) = !Tc

!
Tµ⌫(x)W (3)

n øn (0)
"

d4x i L (3)
int (x)

#
" , (136)

whereW (3)
n øn (0) is given in Eq. (94). This correlator contains contributions from the independent emission

from three currents, depicted in Fig. 5, and from the correlation of an independent emission with a
medium-modiÞed one, see the second line in Eq. (94) and Fig. 6.

The Þrst case is a pure vacuum contribution, but these terms are proportional to

f abcdabc = 0 , (137)

due to color symmetry. The factors in the second line of Eq. (94) give rise to the diagrams in Fig. 6, and
can be expressed as

Cµ⌫

(3 ,1,0) (x) = ig4CF CA

"
d4(q, q!, k)

(2! )4 e" i (q+ q! )áx
$

i = a,b,c,d

! µ⌫

( i ) (q, q!, k) , (138)

where

! µ⌫

(a) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q, q# k, k)J #
�

(q!)I
��

(# q + k, # k)

$ Dra (q)Dra (q!)Dra (q # k)Drr (k) , (139)

! µ⌫

(b) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q!, k, # k + q!)J #
�

(k)I
��

(# q! + k, # q)

$ Drr (q)Dra (q!)Dra (q! # k)Dra (k) , (140)

! µ⌫

(c) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q!, k, # k + q!)J #
�

(q! # k)I
��

(# q,# k)

$ Dra (q)Dra (q!)Dra (q! # k)Drr (k) , (141)

! µ⌫

(d) (q, q!, k) = Tµ⌫�⇢(q, q!)V ��

⇢

(# q!, # k + q!, k)J #
�

(k)I
��

(# q,# q! + k)

$ Drr (q!)Dra (k)Dra (q)Dar (q! # k) . (142)
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can be expressed as
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Figure 7: The only non-zero diagram from W (4)
n øn (0) contributing to the diagrams with two retarded

propagators reaching the detector (ÒdecoherenceÓ diagram).

CHECK the last expression! The two diagrams (a) and (c) have a similar structure to the correlator
Cµ! ,b

(2 ,2,0) in the sense that the ÒinternalÓ momentum (k, or q in the case of diagram (b)) does not propagate
to the detector. We then immediately Þnd that in the detector limit, the expression becomes

P áC(4,1) (x)
!
!
!
(a+ c)

lim
=

! 1
4

ig4CF CA

"
d4k

(2! )4 Drr (k)
"

d3q
(2! )32" q

#(öq ! e)
" q

[! (q; k) + ! (! q; ! k)] , (143)

where we have switched the sign ofk in the last term. Finally,

! (q; k) = Pµ! Tµ !"# (q,! q)
#
V $%

# (! q, q! k, k)J " (q)I $%(! q + k, ! k)Dra (q ! k)

+ V $%
# (q, k,! k ! q)J %(k + q)I "$ (! q,! k)Dra (k + q)

$
(144)

The simpliÞcation of the remaining diagram (b) follows the same logic. We Þnally obtain

P áC(4,1) (x)
!
!
!
(b)

lim
=

! 1
4

ig4CF CA

"
d4k

(2! )4

"
d3q

(2! )32" q

#(öq ! e)
" q

1
2

coth
%" q

2T

&
[" (q; k) ! " (! q; k)] , (145)

where

" (q; k) = Pµ! Tµ !"# (q,! q)V $%
# (q, k,! q ! k)J !

$ (k)I "%(q + k, ! q)Dra (! q ! k)Dra (k) . (146)

Note that the limit of soft ÒinternalÓ momentum in this case corresponds to" q " 0, sinceq is on-shell.
The momentum k is o#-shell. In this case,

" (q; k) # ! 2i " 2
q |J (k)|2 , (147)

which determines that there is no soft divergence proportional toT as in the previous cases.

4.5 Calculation of Cµ!
(4,0,0)(x)

There are several non-zero diagrams arising from theW (4)
n øn (0). The only one contributing to the set

of diagrams with two retarded propagators reaching the detector is drawn in Fig.7. We will call it the
ÒdecoherenceÓ contribution, as it describes the interactions of the two currents/jets before the emission. In
order to write the Feynman diagrams, we will Þrst extract the right piece from the Wilson line expansion,
the term consisting of the product of two commutators, which we put in the following form

W (4)
n øn (0)

!
!
!
cc

= ( ig)4
"

dt1dt2dt3dt4$ abcd
(1)

1
22 %12%34

$
'
$a

n (t1)A b
n (t2) ! $a

øn (t1)A b
øn (t2)

( '
$c

n (t3)A d
n (t4) ! $c

øn (t3)A d
øn (t4)

(
(148)

=
(ig)4

4
$ abcd

(1)

"
d4(k1, k2, k3k4)

(2! )4 I µ ! (k1, k2)I &$ (k3, k4)$a
µ (k1)A b

! (k2)$c
&(k3)A d

$ (k4) . (149)

Then, the correlator becomes

Ceøe
(4 ,0,0) (x) =

(ig)4

4
$ abab

(1)

"
d4(q, q", k)

(2! )4 e# i (q+ q! )áx Peøe,µ ! Tµ !"# (q, q")

$ D #&!

ra (q")D "&
ra (q)D $$ !

rr (k)I &$ (! q,! k)I &! $ ! (! q", k) . (150)

We read o# the relevant structure that plays a role in the detector limit,

&(q; q"; k) = Peøe
µ ! Tµ !"# (q, q")D $$ !

rr (k)I "$ (! q,! k)I #$ ! (! q", k) . (151)
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¥ collinear divergences cured by HTL resummation

- particles acquire thermal mass:

- matching of divergences provide UV regularisation 
for divergent HTL integrals

- off-shell degrees of freedom: space-like correlation

¥ small-angle regime: LPM effect

- novel power counting with ' us

- resummation (AMY)
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CONCLUSIONS

¥ universal shape function in the vacuum

¥ clean theoretical setup: separation of jet and medium scales

¥ O(g2): 

- on-shell contribution Ñ temperature broadening

- modiÞcation of the ÔtubeÕ model

¥ O(g4):

- sensitivity to in-medium dynamics

- emergence of LPM physics: resummation

¥ application to other observables

19



BACK-UP



K. Tywoniuk (CERN) VFQCD 07.10.2016

UNIVERSAL SHAPE FUNCTION
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logarithmic (DL) accuracy as

1
! tot

d!
dt

!
!
!
!
PT

=
dRPT (t)

dt
, RPT (t) DL= exp

"

!
4" s(Q)

3#
ln2 t

#

(4)

with RPT (t) called the radiator function. One can systematically improve perturbative approxi-
mation by including additional nonleading logarithmic terms in RPT (t) and matching the result
into exact higher order calculations using the lnR! scheme [13]. The perturbative Sudakov spec-
trum extends over the interval 0" t " tmax and vanishes at the end points. The peak of the
distribution is located close tot = 0 and it is shifted towards larger t as one improves pertur-
bative approximation. Its position, tp = O(! QCD /Q ), is sensitive to the emission of soft gluons
with energy # ! QCD indicating that the physical spectrum around the peak is of nonperturbative
origin.

Let us now estimate the e" ects of nonperturbative soft gluonemissions on the thrust dis-
tribution (3). We take into account that in the leading order in 1/ (Q2t) the transverse size of
two quark jets k2

! = O(Q2t) can be neglected, that is soft gluons with the energy# Qt can not
resolve the internal structure of jets. This means that considering soft gluon emissions we may
apply the eikonal approximation and e" ectively replace quark jets by two relativistic classical
particles that carry the color charges of quarks and move apart along the light-cone directionsp+

and p" . The interaction of the quark jets with soft gluons is factorized into the unitary eikonal
phaseW(0) given by the product of two Wilson lines calculated alongclassical trajectories of
two particles

W(0) = W+ (0)[W" (0)]  , W± (x) = P exp
$

i
%#

0
ds p± áA(x + p± s)

&

, (5)

with gauge ÞeldsAµ(x) describing soft gluons. Denoting the total momentum of soft gluons
emitted into the right and left hemispheres askR =

'
i $ R ki and kL =

'
i $ L ki , correspondingly,

one Þnds the thrust (1) ast = 2( kRp+ )/Q 2 + 2( kL p" )/Q 2 and obtains the following expression
for the di" erential distribution

1
! tot

d!
dt

=
(

N

|$0|W(0)|N %|2 $

"

t !
k"

R

Q
!

k+
L

Q

#

(6)

with k± = k0 ± k3. Here, the matrix element of the Wilson line operator describes the interaction
of quarks with soft gluons and the summation goes over the Þnal states N of soft gluons with
the total momentum k = kR + kL . Expression (6) follows from the universality of soft gluon
radiation and it takes into account both perturbative and nonperturbative corrections [9].

Let us neglect for the moment the perturbative contributionto the matrix element of the
Wilson line in (6). Then, introducing the shapefunction

f (%) =
(

N

|$0|W(0)|N %|2 $
)
%! k"

R ! k+
L

*
(7)

one can estimate the nonperturbative contribution to the thrust distribution as

1
! tot

d!
dt

!
!
!
!
nonPT

= Qf (Qt) . (8)

The nonperturbative function f (%) is localized at small energies%and according to (8) it deter-
mines the shape of the spectrum at smallt = O(! QCD /Q ).
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logarithmic (DL) accuracy as

1
σtot

dσ

dt

!
!
!
!
PT

=
dR

PT
(t)

dt
, R

PT
(t) DL= exp

"

!
4αs(Q)

3π
ln2 t

#

(4)

with R
PT

(t) called the radiator function. One can systematically improve perturbative approxi-
mation by including additional nonleading logarithmic terms in R

PT
(t) and matching the result

into exact higher order calculations using the lnR! scheme [13]. The perturbative Sudakov spec-
trum extends over the interval 0" t " tmax and vanishes at the end points. The peak of the
distribution is located close tot = 0 and it is shifted towards larger t as one improves pertur-
bative approximation. Its position, tp = O(!

QCD
/Q ), is sensitive to the emission of soft gluons

with energy # !
QCD

indicating that the physical spectrum around the peak is of nonperturbative
origin.

Let us now estimate the e" ects of nonperturbative soft gluonemissions on the thrust dis-
tribution (3). We take into account that in the leading order in 1/ (Q2t) the transverse size of
two quark jets k2

! = O(Q2t) can be neglected, that is soft gluons with the energy# Qt can not
resolve the internal structure of jets. This means that considering soft gluon emissions we may
apply the eikonal approximation and e" ectively replace quark jets by two relativistic classical
particles that carry the color charges of quarks and move apart along the light-cone directionsp+

and p" . The interaction of the quark jets with soft gluons is factorized into the unitary eikonal
phaseW(0) given by the product of two Wilson lines calculated alongclassical trajectories of
two particles

W(0) = W+ (0)[W" (0)]  , W± (x) = P exp
$

i
%#

0
ds p± áA(x + p± s)

&

, (5)

with gauge ÞeldsAµ(x) describing soft gluons. Denoting the total momentum of soft gluons
emitted into the right and left hemispheres askR =

'
i $ R ki and kL =

'
i $ L ki , correspondingly,

one Þnds the thrust (1) ast = 2( kRp+ )/Q 2 + 2( kL p" )/Q 2 and obtains the following expression
for the di" erential distribution

1
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dt
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N

|$0|W(0)|N %|2 δ

"

t !
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!

k+
L

Q

#

(6)

with k± = k0 ± k3. Here, the matrix element of the Wilson line operator describes the interaction
of quarks with soft gluons and the summation goes over the Þnal states N of soft gluons with
the total momentum k = kR + kL . Expression (6) follows from the universality of soft gluon
radiation and it takes into account both perturbative and nonperturbative corrections [9].

Let us neglect for the moment the perturbative contributionto the matrix element of the
Wilson line in (6). Then, introducing the shapefunction

f (ε) =
(

N

|$0|W(0)|N %|2 δ
)
ε ! k"

R ! k+
L

*
(7)

one can estimate the nonperturbative contribution to the thrust distribution as

1
σtot

dσ

dt

!
!
!
!
nonPT

= Qf (Qt) . (8)

The nonperturbative function f (ε) is localized at small energiesε and according to (8) it deter-
mines the shape of the spectrum at smallt = O(!
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4

Catani, Trentadue, Turnock, Webber, NPB407 (1993) 3 
Korchemsky hep-ph/9806537

and Γcusp(! s) = 4! s

3" + O(! 2
s) being a universal cusp anomalous dimension.

We observe that since the singularities of the coupling constant affect the integration over
transverse momenta of soft gluons in (11) the Sudakov form factor S(" ) suffers from infrared
renormalon ambiguities. They originate from soft gluons with the energy of order ΛQCD whose
contribution should be separated into nonperturbative function f (#). Namely, introducing the
cut-off µ on the value of transverse gluon momenta in (11) we may split S(" ) into the sum of two
terms. The term with k2

! > µ 2 defines the perturbative contribution to the exponent, S
PT

(" ),

which in turn allows to find the perturbative spectrum
d#

PT
(t ;µ)

dt through the inverse Laplace
transformation (10). The second term with k2

! < µ 2 should be absorbed into the definition of the
nonperturbative function (7). In this case, changing the order of integration in (11) one expands
the integral in powers of " and absorbs the ambiguous integrals

! µ
0 dk! kn" 1

! Γcusp(! s(k! )) into the
definition of new nonperturbative scales $n(µ). Substituting (8) into (10) one finds the following
consistency condition

" #

0
d#e" $%/Q f (#; µ) = exp

#

!
#$

n=1

1

n!
(" /Q )n$n(µ) + O(" /Q 2)

%

. (12)

Although we can not draw any conclusions about the absolute value of the scales $n , their
µ! dependence is of perturbative origin and it can be determined as

µ
d$n(µ)

dµ
= 4(! )n+1 n" 1µnΓcusp(! s(µ)) . (13)

Since the parameter " is conjugated to the thrust t we neglected in (12) the corrections " " /Q 2

and replaced the upper limit of #! integration, #max = tmaxQ, by # .
The fact that the infrared renormalons contribute additively to the exponent of (10) implies

that the Laplace transform of the thrust distribution is factorized into the product of perturbative
and nonperturbative terms [3]

$e" $t %= $e" $t %
PT

&
" #

0
d#e" $%/Q f (#; µ) (14)

where $e" $t %
PT

is calculated as a mean value with respect to the perturbative distribution
d#

PT

dt .
Integrating the both sides of this relation with respect to " with an appropriate weight we obtain
the factorized expression for the radiator function R(%) ' 1

#tot

! &
0 dt d#

dt = $&(%! t)%

R(t) =
" tQ

0
d#f (#; µ)R

PT

#

t !
#
Q

; µ

%

, (15)

where the upper limit of integration follows from the condition R
PT

(t) = 0 for t < 0. Thus, the
net effect of incorporating nonperturbative corrections (in the leading 1/ (Q2t)! order) amounts
to the 1/Q ! shift of perturbative radiator function smeared with the shape function.

To see how (15) resums both perturbative and nonperturbate corrections, one expands the
radiator R

PT

&
t ! %

Q ; µ
'

in powers of 1/Q

R(t) = R
PT

(t) !
$#%
Qt

R$
PT

(t) +
$#2%

2(Qt)2
[R$$

PT
(t) ! R$

PT
(t)] + . . . , (16)
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where the upper limit of integration follows from the condition RPT (t) = 0 for t < 0. Thus, the
net e" ect of incorporating nonperturbative corrections (in the leading 1/ (Q2t)! order) amounts
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