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Probing QCD in the Regge limit and towards saturation

What kind of observable?

@ Perturbation theory should apply : a hard scale Q? is required

@ One needs semihard kinematics : s> p% >> A%, where all the typical
transverse scales pr are of the same order

. 1 2 .
@ Saturation is reached when Q* ~ QZ o (£2)* : the smaller x ~ < is and

the heavier the target ion, the easier saturation is reached.

@ Typical processes : DIS, Mueller-Navelet double jets, ultraperipheral
events at the LHC...
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Precision tests of BFKL dynamics

@ The BFKL kernel is known at NLL accuracy,
resumming as(as log s)" corrections (Lipatov,
Fadin ; Camici, Ciafaloni )

@ Very few impact factors are known at NLO
accuracy

s v* — 4* (Bartels, Colferai, Gieseke, Kyrielis,
Qiao; Balitsky, Chirilli)

o Forward jet production (Bartels, Colferai, Vacca
; Caporale, lvanov, Murdaca, Papa, Perri ;
Chachamis, Hentschinski, Madrigal, Sabio Vera)

@ Inclusive production of a pair of hadrons
separated by a large interval of rapidity (Ivanov,
Papa)

9 7] — pi in the forward limit (Ivanov, Kostsky,
Papa)
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Diffractive DIS

Rapidity gap events at HERA

Experiments at HERA : about 10% of scattering events reveal a rapidity gap

(b)

DIS events DDIS events

DIS : Deep Inelastic Scattering, DDIS : Diffractive DIS



Exlusive diffractive dijet production

00080000

Diffractive DIS

Rapidity gap events at HERA

Experiments at HERA : about 10% of events reveal a rapidity gap
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Diffractive DIS

Y=in1
Xg

Theoretical approaches for DDIS using pQCD

@ Collinear factorization approach

e 3 o Relies on a QCD factorization theorem,
ooy using a hard scale such as the virtuality
BK JIMWLK Q? of the incoming photon
@. @ One needs to introduce a diffractive
distribution function for partons within a
+ pomeron
BFKL o
@ kr factorization approach for two
DGLAP h d |
exchanged gluons
o low-x QCD approach : s> Q% > Nocop

3
InNaco

@ The pomeron is described as a two-gluon

nQ? N
color-singlet state

6
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Theoretical approaches for DDIS using pQCD

Collinear factorization approach

Remnant

Jet
Jet

Remnant

b) Y

Resolved
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Theoretical approaches for DDIS using pQCD

kr-factorization approach : two gluon exchange

qg—k+xpp

b—xpp

Bartels, lvanov, Jung, Lotter, Wiisthoff
Braun and lvanov developed a similar model in collinear factorization
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Theoretical approaches for DDIS using pQCD

Confrontation of the two approaches with HERA data
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Computation framework

NLO computations in the shockwave framework
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The shockwave approach

One decomposes the gluon field A into an internal field and an external field :
AP = AF 4 pH

The internal one contains the gluons with p; > e”pZ and the external one
contains the gluons with p; < e”pl. One writes :

bl (z) =6 (z7) By (Z) ny

Intuitively, large boost A along the + direction :

pt > elph

11/42
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Propagator through a shockwave

G (22, z0) = —/d4zl0 (z5) 6 (z) 0 (—2) G(z2 — 21) v G (21 — z0) Us

G(q,p) = (2W)9(P+)/qu15(q+Q1 - p)G(a)7" Uz G (p)

Wilson lines :

+oo
U= Uz = U(Z,n) = Pexp {ig/ b, (z, Z) dz;*

]

+oo 5 +oo
U=1+ ig/ b, (z, Z)dzi" + (ig) / b, (z, Z)b, (z;r,zj-)G(z;.r)dzl.+dzJ.Jr
- —o0

[eS]
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Evolution equation for a color dipole

Dipole operator

ul, = NiTr (urugt) -1

involving Wilson lines
Ul = ... [1+igby(z" + Az, 2) Az [1 + igh,(z*, 2) Az ...

1+ ighy(z7 + AZT, 2)AZT] [L+ ighy (27, 2)AZ7] ...

3
[

Z - - - - — -

-
Z2 — — _ - =
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Evolution equation for a color dipole

Dipole operator

A — N%Tr ( yr+an U2(W+An)1‘) 1
involving Wilson lines
UPT8" = L [1+ igbyran(zT + AzT, 2)AZ"] [+ igbyian (27, 21)AZ7] ...
UJHAT = L [1+ igbyran(zT + AzT, ) Az"] [1+ igbyian (2, 2)AZ7] ...
Z - - - - - n+A4n
Z o _ - — - ntAn

14 /42
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Balitsky's hierarchy of equations

iﬂ iﬂ

B-JIMWLK equation
[Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner]

U asN. .
on  2m /dz 7272 2% [U1s + Uso — Uro — U1sUs]
0U13U3

on

15 /42
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The BK equation

Mean field approximation, or 't Hooft limit N. — oo in Balitsky's equation

W<m . w<+
[Mueller]

= BK equation [Balitsky, 1995] [Kovchegov, 1999]

8U
2 = > /d Z3 _.5132 [U13 + U32 - U12 — U13U32]
2“ Z3253

Evolves a dipole into a double dipole
Non-linear term : saturation

16 /42



NLO impact factor

Assumptions

@ Regge limit : s > Q%> Aqcp
@ No approximation for the outgoing gluon, contrary to e.g. :

o Collinear approximation [Wiisthoff, 1995]

@ Soft approximation [Bartels, Jung, Wiisthoff, 1999]

[

Lightcone coordinates (p+, P, ﬁ) and lightcone gauge n - A =0

@ Transverse dimensional regularization d = 2 + 2¢, longitudinal cutoff

+ +
Py < apy

(7

Shockwave (Wilson lines) approach [Balitsky, 1995]
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Leading Order

Yo

T

A = calle / d5rd? 5205 (B, 52) 8 (s + Fre) Uro

pij = pi — pj
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First kind of virtual corrections

Pa 2

c —

— — « — — — — 2 1 Y
Avi 5aNc/ddPldszq)w (Pr, P2) 6 (P + Pa2) (T) Ui
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Second kind of virtual corrections

Ava o« ealc / d?prd? pd” Ps Vs (Pr. 2, P3)0 (Par + Paz — P3)
2

(N1 - Lo
[5 (Ps) ( N ) Ui + Ne (U13U32 + Uiz + Uz — U12)}

c
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First kind of real corrections

tp 2]

w !
+ p i‘ﬁ
u m

tm

- - « — — — — — Ng -1
Ar1 = Ea/Vc/ddplddlb 1 (P, P2 )0 (Pa1 + Paz + Pg) <—) U
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Second kind of real corrections

' : 00
500
ldﬁmﬂ. .

Ary = eale / d?prd? pad? Bz %, (P, Po, F2)8 (Bt + Pz + Pes)

N2 -1\ - . - - - - -
{( N ) U120 (p3) + Ne <U13U32 + Uiz + Uz — U12>]

c
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Divergences

@ Rapidity divergence p; — 0 Dy ®g + Dby,
@ UV divergence p; — +00 Py1®g + PodY,y
@ Soft divergence p, — 0 Dy1®g + Gody, PriPRy
9 Collinear divergence pg; o< pg or pg DriPry

. . Py Py + .
@ Soft and collinear divergence p, = ﬁpq or épa, pg — 0 Dr1Pry
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Rapidity divergence

u n n

B-JIMWLK evolution of the LO term : & ® Kgk
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Rapidity divergence

B-JIMWLK equation

20, oy [ déKid¥odks
= 2asN, /75 ki +
dloga sNcp ) (2‘rr)2d (k1 2

.
R ) (- ) n2ra— D) [ sk —m) 5(ky — )
: T i
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(ki — p1)2(k2 — B2)

7 rapidity divide, which separates the upper and the lower impact factors

o . e . . . .
U ®o — doUY, + log <E) Kk ®o <U13U32 + Uiz + Uz — U12>
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Rapidity divergence

Virtual contribution

s o 3) [ ()

BK contribution

(Pl )div o< DF {4“‘ (eaTi) E i (i_f)”

Sum : the « dependence cancels

XX 1 5 6
e x5 fan (5) [+ (5] -2)
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Rapidity divergence

Cancellation of the remaining 1 /¢ divergence
Convolution

(@, ®UU) = /dd 1d?pad? p3{4|n (%)[ +|n(”3)}—9}
7 I-’L 5
X 0(Pg1 + Pg2 — P3) {013 + 032 — 012 — 013032] ¢g(ﬁ1,ﬁz)

Rq :
@ ®o(pi, p2) only depends on one of the t-channel momenta.

@ The double-dipole operators cancels when Z3 = Z1 or 23 = 2.

This permits one to show that the convolution cancels the remaining é
divergence.

Then U0 + dvy s finite

~
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N
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Divergences

@ Rapidity divergence

@ UV divergence p; — +00 Py1®g + PodY,y
@ Soft divergence p, — 0 Dy1®g + Gody, PriPRy
9 Collinear divergence pg; o< pg or pg DriPry
@ Soft and collinear divergence p, = %pq or %pa, p; —0 Pr1Pr1

o
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Contructing a finite cross section
Exclusive diffractive production of a forward dijet

From partons to jets

29 /42
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Soft and collinear divergence

Jet cone algorithm

We define a cone width for each pair of particles with momenta p; and py,
rapidity difference AYjc and relative azimuthal angle Ay

(AYi)? + (D) = R

If RZ < R?, then the two particles together define a single jet of momentum
pi + Pk

parton; (vi, ¢i)

cone axis

partony (v, ¥k)

Applying this in the small R? limit cancels our soft and collinear divergence.

30/42
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Remaining divergence

@ UV divergence ﬁgZ — 400

¢V1¢8 + ¢0¢T/1

@ Soft divergence p, — 0

Dy1Pg + PodY, Pr1PRy

@ Collinear divergence p; o pg or pg

D1 PRy
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Remaining divergence

Soft real emission

(PrR1PR1), f X (¢0¢8)/

outside the cones

+ (27T)d

pY Py

(Pg-Pe)  (Pa-Pg)

Collinear real emission

(¢R1¢F\’1)co/ X (‘1’0‘1’3) (Nq +Nﬁ)
Where N is the number of jets in the quark or the antiquark

g Lo s ua
(47)> /Jer dpg dp; / d¥Bed” B Tr (Bky* Bjery”) duuw (Pe)
) @ in cone k (

N = d d 2
re- 2 Py 2Pg 2p’< 2m)" =2 2pf jet (pk +pPg — pJ;t)

Those two contributions cancel exactly the virtual divergences (both UV and
soft)
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Cancellation of divergences

Total divergence

ra-— N2 —1 .
(do1)dav = Ozsﬁ (W) (Sv + Sv + Sk + Njet1 + Nier2)doo

Virtual contribution
2
. . 1
5= [on () ] [ (e ) - L
@ (%P} — x;P7) €

2
. 5% 2 (X6 _
+ 217r|n(?>+|n <?>—?+6
Real contribution

= ~ 4 2
B — i 4E
Sr 4+ Njet1 + Njerz = 2 |:|n ((XJPI ijj_,)2> In < >

X2 x? R*B-2p x5 (py )2

2
X7 Xj 1 XaXj b X7 Xj
L 2n (171) S (e L I I (171)
o? € (587 = % P;)? o?
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Cancellation of divergences

Total divergence
div. = Sy + 5y + Sk + Nietr + Ner2
-5 — x: B )} 2
4[5 % ('” (Lﬁ—z)—"_%)
2\ xR, xix;(py) 2

.52 2
) X p- _
In(8) — %In <§) In (;12> RRE 2 ﬁ }
J GP;j

Our cross section is thus finite

_|_

34 /42
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Conclusions

@ We computed the amplitude for the production of an open gg pair in
DDIS

@ Using this result, we constructed a finite expression for the cross
section for the exclusive production of dijets

@ The remaining part can be expressed as a finite integral, so it can be
used straightforwardly for phenomenology

@ Any model can be used for the matrix elements of the Wilson line
operators (GBW, AAMQS if the target is a proton or an ion)

@ The target can also be perturbative, involving any impact factor...

35/42
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General amplitude

@ Most general kinematics /\

@ The hard scale can be Q?, t, M2 Q?
or m? in the (future) massive
extension of our computation.

@ The target can be either a
proton or an ion, or another
impact factor. apidity gap

@ One can study ultraperipheral
collision by tagging the particle 1
which emitted the photon, in the
limit @* — 0.

The general amplitude

36 /42
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Phenomenological applications : exclusive dijet production at NLO accuracy

@ HERA data for exclusive dijet
production in diffractive DIS can
be fitted with our results

@ We can also give predictions for
the same process in a future
electron-ion or electron-proton
collider (EIC, LHeC...)

pidity gap

o For Q% =0 we can give
predictions for ultraperipheral
collisions at the LHC

Amplitude for diffractive dijet production



NLO impact factor
[e]e]e] lelele]e]

Phenomenological applications : exclusive trijet production at LO accuracy

@ HERA data for exclusive trijet

A
production in diffractive DIS can ) >
be fitted with our results Q

@ We can also give predictions for
the same process in a future
electron-ion collider apidity gap

@ For Q% =0 we can give | |
predictions for ultraperipheral \/
collisions at the LHC

Amplitude for diffractive trijet production
[Ayala,Hentschinski,Jalilian-Marian, Tejeda-Yeomans]
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NLO DIS

@ One can adapt our general
amplitude to obtain the NLO
expression for (non diffractive)
DIS

@ Such a result would have to be
compared with Balitsky and
Chirilli's result, and with an
ingoing study by Beuf.

pidity gap

NLO DIS cross section

39/42
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Diffractive production of a p meson

@ By forcing the quark and
antiquark to be collinear and
using the right Fierz projection,
one can study p production

Q2

@ Generalization of previous results
of Ivanov, Kotsky, Papa to the

rapidity gap
non-forward case

@ This would give a better o
understanding of the formal \/
transition between BFKL and BK

Amplitude for diffractive p production
ek @ Kk @ Pox = (Parke @ O) (O ' @ Kgrxe O)(O " @ Dy

40/42
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With an added mass

@ Open charm production (straightforward)

@ Heavy quarkonium production (in the Color Evaporation formalism)

Q2

rapidity gap

Amplitude for diffractive production of a charmonium

41 /42
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Conclusion

@ We provided the full computation of the impact factor for the exclusive
diffractive production of a forward dijet with NLO accuracy in the
shockwave approach

@ |t leads to an enormous number of possible phenomenological applications
to test QCD in its Regge limit and towards saturation in past, present and
future ep, eA, pp and pA colliders

@ Several theoretical extensions could be obtained with slight modifications
to our result
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