Exclusive Vector Meson Production at HERA and the LHC

Lidia Goerlich

Institute of Nuclear Physics PAN, Cracow

- Exclusive VM production at HERA : transition from soft to hard regime
- Exclusive photoproduction of J/Ψ at HERA
- Exclusive production of J/ Ψ in p-p and heavy-ion ultra-peripheral collisions at the LHC
- Summary

3rd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society Various Faces of QCD

Świerk, October 8-9, 2016

V (J^{PC} = 1⁻⁻) = ρ , ω , ϕ , J/ Ψ , Ψ ', Y

- **Q**² virtuality of the exchanged boson
- **W** γ -p centre of mass energy
- t (4-momentum transfer)² at the proton vertex

Q² >> 1 GeV² deep inelastic scattering (DIS)

 $Q^2 \approx 0 \text{ GeV}^2$ photoproduction

Diffractive vector meson production : t-channel exchange of a colourless object with vacuum quantum numbers (Pomeron, IP)

|t|< 1 GeV²: the proton stays intact, high |t|: proton dissociates to a low mass excited state

Experimental signature :

- Notably two-prong decays via charged decay products ($\rho^0 \rightarrow \pi^+\pi^-, \phi \rightarrow K^+K^-, J/\Psi \rightarrow e^+e^-/\mu^+\mu^-$)
- No additional activity beyond the noise level in the detector (except that associated with the scattered electron)
- Proton dissociative processes: activity in forward detectors

Soft and hard Pomeron exchange

Soft Pomeron exchange

Hard Pomeron diagrams

LO: 2-gluon exchange

LL 1/x – BFKL Pomeron

Vector Dominance Model + Regge phenomenology

 α_{0} = 1.08, α^{\prime} = 0.25 GeV^-2 (Donnachie&Landshoff)

$$\sigma^{
m p
ightarrow
m Vp} \propto {
m W}^{4(lpha_{
m IP}-1)} \propto {
m W}^{\delta}$$
 , s and below 0.22

d σ /dt ~ exp(-b(W)ItI) \rightarrow

transverse size of the interaction region : b ~ $R_{int}^2 \approx 10 \text{ GeV}^{-2}$

Perturbative QCD

Hard scales: Q^2 , M_{VM} , t \rightarrow small $q\underline{q}$ dipoles

Proton rest frame – dipole approach

- The virtual photon fluctuates into a qg pair
 - \rightarrow a colour dipole of transverse size $~r_{\perp} \sim 1/\sqrt{Q^2}$
- The dipole scatters elastically from the proton (dipole cross section)
- The outgoing dipole hadronises to VM (non-perturbative VM wavefunction)
- LO : σ^{γp→Vp} ~ (xg(x))² ~ W^δ (skewing effects neglected) cross section sensitive to gluon density !
- δ≈ 0.7 (J/Ψ prod.), b << 10 GeV⁻² (~ 4-5 GeV⁻²)

Various VM photoproduction cross sections as a funcion of $W_{\gamma p}$: $\sigma \sim W_{\gamma p}^{\delta}$

- VM mass sets the QCD scale
- small M_{VM} (~ 1 GeV) : transverse size of dipole ~ size of proton
- large M_{VM}: small dipole size, dipole resolves partons in the proton:

 $\sigma \textbf{~} (\textbf{xg})^2 \rightarrow \textbf{large} \ \delta$

Increasing gluon density with decreasing x \rightarrow the rapid rise of cross section with W (x ~ 1/W_{yp}²)

- Large parton densities at low x
- → phenomena of parton saturation and non-linear evolution may become important

VM production at HERA: transition from soft hadronic to perturbative behaviour

• Decreasing slope (and interaction size) with rising scale Q² + M_{VM}^2 \rightarrow transition from soft and hard regime

The gluon radius of the proton may be smaller than its quark radius

Photoproduction of J/Ψ mesons at HERA

H1 [EPJ C73 (2013) 2466], HE: √s ≈ 318 GeV, LE: √s ≈ 225 GeV

- Simultaneous unfolding of elastic and proton-dissociative channels
- Both e⁺e⁻ and μ⁺μ⁻ decay channels

• Energy dependence:
$$\sigma \sim W_{\gamma p}^{\delta}$$

$$\delta_{el}$$
 = 0.67 ± 0.03, δ_{p-diss} = 0.42 ± 0.05

Ratio of the p-diss to elastic J/Ψ cross section decreases with increasing W_{γp} (E. Gotsman et al. : W_{γp} dependent survival probablity for the p-diss process)

Exclusive photoproduction of J/Ψ mesons

Elastic J/ ψ photoproduction

• Fixed target data : lower normalisation and steeper slope than HERA data

 H1 fit extrapolation for the elastic J/Ψ cross section describes the LHCb data at high W_{γp} (~ 1.5 TeV) LHCb (36 pb⁻¹): p + p → p + J/Ψ + p Elastic J/ ψ photoproduction

- LO and NLO low x gluon density (10⁻⁴ ≤ x ≤ 10⁻²) derived from fits to previous J/Ψ data at HERA (A. Martin et al., PLB 662 (2008) 252)
- Both fits extrapolated to higher W_{yp} (~ 1.5 TeV)
- LO fit describes the LHCb data at \sqrt{s} = 7 TeV well, NLO fit is too steep

$d\sigma(\ pp \rightarrow p + J/\Psi + p \) \ / \ dy$

Updated LHCb measurements (930 pb⁻¹) at \sqrt{s} = 7 TeV [J. Phys. G41 (2014) 055002]

Jones, Martin, Ryskin&Teubner (JMRT) JHEP 1311 (2013) 085 γ^*

Skewed g(x, x', k_T) Absorptive corrections for pp Motyka&Watt, Phys. Rev. D78 (2008) 014023 Gay Ducati et al., Phys. Rev. D88 (2013) 017504 Central exclusive J/Ψ production at LHC

LHCb data points for $W_{+}(W_{-})$ determined assuming the H1 derived power – law fit for $W_{-}(W_{+})$ and using relation of exclusive production of J/ Ψ in pp to photoproduction :

 dn/dk_{\pm} : photon fluxes for photons of energy k_{\pm}

r_± : absorptive corrections [Schäfer & Szczurek PRD 76 (2007) 094014]

Ultra - peripheral collisions at the LHC (UPC)

• UPC – the projectiles (Pb-Pb, p-Pb or pp) are at large impact parameters :

 $b > R_1 + R_2$

- hadronic processes are greatly suppressed
- nucleus is an intensive source of photons
 photon flux ~ Z²
 - ⇒ large cross sections for photon induced reactions
- photon virtuality restricted by the nuclear form factor

 $Q^2 = (\hbar c/R)^2 \approx (35 \text{ MeV})^2 \text{ for } \gamma \text{ from Pb}$

exclusive VM production in γA

coherent:

 γ couples coherently to all nucleons, low $p_{T,\text{VM}},$ nucleus does not break up

incoherent:

quasi-elastic scattering off a single nucleon, higher $p_{T,VM}$, nucleus breaks up (activity in v. forward region) $p + Pb \rightarrow p + J/\Psi + Pb$

Asymmetric proton-nucleus collisions

- \Rightarrow dominant contribution from the amplitude where Pb emits the photon (strong 7^2 enhancement of
 - Pb emits the photon (strong Z² enhancement of photon flux)
- ⇒ proton structure is probed extraction of the small x gluon

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(\mathrm{p}+\mathrm{Pb}\to\mathrm{p}+\mathrm{Pb}+\mathrm{J}/\psi)=k\frac{\mathrm{d}n}{\mathrm{d}k}\sigma(\gamma+\mathrm{p}\to\mathrm{J}/\psi+\mathrm{p})$$

photon flux from MC STARLIGHT

Exclusive photoproduction of J/Ψ

● p- Pb UPCs at √s_{NN} = 5.02 TeV

ALICE

• Pb-Pb UPCs at $\sqrt{s_{NN}}$ = 2.76 TeV

J/Ψ photoproduction in Pb – Pb

- dominant contribution from the W_ amplitude
 - \rightarrow effective γN energy not so large
 - → probe nuclear effects on gluon PDF (gluon shadowing)

p – Pb event

2 tracks in an otherwise empty detector

PRL 113 (2014) 232504, Exclusive J/ Ψ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

LAB : forward / backward produced J/ $\Psi \rightarrow \mu^{+}\mu^{-}$, 2.5 < y < 4 (p-Pb), -3.6 y < -2.6 (P -p) W_{yp} between 20 – 700 GeV; Bjorken-x between ~2 · 10⁻² to 2 · 10⁻⁵

ALICE : J/Ψ in p-Pb

Energy dependence of $\sigma(\gamma + p \rightarrow J/\Psi + p)$

- Precision on slope of energy curve similar to HERA $\sigma \sim W^{\delta}, \delta = -0.68 \pm 0.03$ (HERA), $\delta = -0.68 \pm 0.06$ (ALICE) \Rightarrow no deviation from a power law up to ~ 700 GeV
- Theoretical predictions within one sigma of the ALICE data [except b-Sat (1-Pomeron)]

Preliminary LHCb measurements: $pp \rightarrow p + J/\Psi + p$ at $\sqrt{s} = 13 \text{ TeV} (204 \text{ pb}^{-1})$

New forward shower counters (HERSCHEL) improve the exclusivity of events Silicon strip vertex detector + HERSCHEL cover pseudorapidity regions:

-10 < η < -5, -3.5 < η < -1.5, 1.5 < η < 10

Preliminary LHCb measurements: $pp \rightarrow p + J/\Psi + p$ at $\sqrt{s} = 13$ TeV (204 pb⁻¹)

• W_ term fixed (HERA parametrisation), modified photon flux and gap survival factors

- The 13 TeV LHCb data in agreement with recalculated 7 TeV results
- Deviation from a pure power-law extrapolation of HERA (missing HO or saturation effects ?)
- Data in agreement with JMRT NLO predictions

Summary

- Exclusive production of vector mesons at HERA illustrates the transition from soft hadronic to hard partonic regions
- Exclusive VM measurements stimulate development of QCD-based models
- Exclusive J/ Ψ photoproduction data from HERA and the LHC have the potential to produce constraints on the gluon density at very low-x

backup

Coherent ρ^0 production in ultra-peripheral Pb-Pb collisions

L. Frankfurt, M. Strikman, M. Zhalov (GDL) : QM Glauber + DL fit to HERA data V. P. Goncalves, M.V.T. Machado (GM): Color dipole model with CGC-like saturation S.R. Klein, J. Nystrand (STARLIGHT): Classical Glauber model + fit to HERA data

- Agreement with STARLIGHT
- Disagreement with the GDL model may be explained by inelastic nuclear shadowing
 [see PLB 752 (2016) 51]

PLB 718 (2013)1273 EPJ C73 (2013) 261

Agreement is best for models incorporating nuclear gluon shadowing

STARLIGHT: Klein, Nystrand, PRC60 (1999) 014903 VDM + Glauber approach where J/ ψ +p cross section is obtained from a parameterization of HERA data

• GM: Gonçalves, Machado, PRC84 (2011) 011902 color dipole model, dipole nucleon cross section taken from the IIM saturation model

• AB: Adeluyi and Bertulani, PRC85 (2012) 044904 LO pQCD calculations: AB-MSTW08 assumes no nuclear effects for the gluon distribution, other AB models incorporate gluon shadowing effects according to the EPS08, EPS09 or HKN07 parameterizations

• CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905 Glauber approach accounting ccg intermediate states

• RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 LO pQCD calculations with nuclear gluon shadowing computed in the leading twist approximation

• Lappi, Mäntysaari, PRC87 (2013) 032201: color dipole model + saturation