

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Polarized Gluons and More from COMPASS

Krzysztof Kurek, National Centre for Nuclear Reserach, Otwock-Świerk, Poland

3rd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society

Various Faces of QCD 2

National Centre for Nuclear Research Świerk near Warsaw, October 8-9, 2016

National Centre for Nuclear Research Świerk near Warsaw, October 8-9, 2016

COMPASS Collaboration at CERN

Beam: $2 \cdot 10^8 \mu^+$ / spill (4.8s / 16.2s) Luminosity ~5 · 10³² cm⁻² s⁻¹ Beam polarization: -80% Beam momentum: 160 & 200 GeV/*c*

Common Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS spectrometer

COMPASS in muon run NIM A 577(2007) 455

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

The COMPASS polarized target and PID

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

11/34

Contents

- Introduction
- New DIS & SIDIS results from COMPASS
- The determination of gluon polarisation from COMPASS review and new
- Preliminary result for Sivers asymmetry for gluons on deuteron and proton targets
- Summary

Introduction

New DIS results Gluon polarization Sivers asymmetry for gluons Summary

Basic tool: the measurement of inclusive and semiinclusive asymmetry

Inclusive asymmetry:

$$A_{1}(x,Q^{2}) = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \approx \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2})} = \frac{g_{1}(x,Q^{2})}{F_{1}(x,Q^{2})}$$

$$A_{1}^{h}(x,z,Q^{2}) = \frac{\sigma_{\uparrow\downarrow}^{h} - \sigma_{\uparrow\uparrow}^{h}}{\sigma_{\uparrow\downarrow}^{h} + \sigma_{\uparrow\uparrow}^{h}} \approx \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2}) D_{q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2}) D_{q}^{h}(z,Q^{2})}$$

Semi-inclusive asymmetry:

Compass g1 results: deuteron/proton 160 GeV

k=(E, p)

k=(E, p)

Ν

proton 200 GeV M

Phys. Lett. B 647 (2007) 8, 330 (low Q²) Phys. Lett. B 690 (2010) 466 M. Wilfert DIS 2014 2016

inclusive and semi-inclusive asymmetry measured on proton and neutron or deuteron allows to full flavour separation

Phys. Lett. B 660 (2008) 458 Phys. Lett. B 680 (2009) 217 Phys. Lett. B 693 (2010) 227 Phys. Lett. B 753 (2016) 18

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Introduction

New DIS results Gluon polarization Sivers asymmetry for gluons Summary

First moment of g1 structure functions

Phys. Lett. B 647 (2007) 8

$$\Gamma_1^N(Q^2) = \frac{1}{9} \left(1 - \frac{\alpha_s(Q^2)}{\pi} + O(\alpha_s^2) \right) \left(a_0(Q^2) + \frac{1}{4}a_8 \right)$$

Compass only

$a_{0 Q_0^2 = 3(GeV/c)^2} = 0.35 \pm 0.03(stat) \pm 0.05(syst)$	QCD NLO
$a_0(Q^2 = 3 ({ m GeV}/c)^2) = 0.32 \pm 0.02_{ m stat} \pm 0.04_{ m syst} \pm 0.04$	2006 data reanalysed 2x statistics new QCD COMPASS fit
	Phys. Lett. B 753 (2016) 18

$$\begin{split} \Gamma_1^N \Big(Q^2 \Big) &= \frac{1}{9} C_1^S (Q^2) \hat{a}_0 + \frac{1}{36} C_1^{NS} (Q^2) a_8 & \text{beyond NLO} \\ \hat{a}_{0|Q^2 \to \infty} &= 0.33 \pm 0.03 (stat) \pm 0.05 (syst) & \text{S.A.Larin et al., Phys.Lett.B404(1997)153} \\ & (\Delta s + \Delta \overline{s}) = \frac{1}{3} (\hat{a}_0 - a_8) = -0.08 \pm 0.01 (stat) \pm 0.02 (syst) \end{split}$$

 $\Delta(s+\overline{s}) = -0.088 \pm 0.007_{
m stat} \pm 0.012_{
m syst} \pm 0.015_{
m evol}$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Introduction New DIS results

Gluon polarization Sivers asymmetry for gluons Summary

New COMPASS NLO QCD fit

Inclusive world data used + new COMPASS

Phys. Lett. B 753 (2016) 18

• Gluon polarisation $\Delta G = \int \Delta g(x) dx$

Not well constrained

more details see: Malte Wilfert, DIS 2016

Introduction

Test of Bjorken sum rule

Compass data (2011 data & new QCD fit included)

$$\Gamma_1^{NS}(Q^2) = \frac{1}{6} \frac{g_A}{g_V} C_1^{NS}(Q^2)$$
 $C^{NS} = 0.89 \ Q^2 = 3 \ (GeV/c)^2$

- Value from the neutron β decay: $|\frac{g_A}{g_V}| = 1.2701 \pm 0.0020$
- Mean Q^2 of the COMPASS data $Q^2 pprox 3~({
 m GeV}/c)^2$

• $g_A/g_V = 1.220 \pm 0.053$ (stat.) ± 0.095 (syst.) • 1.28 0.07 0.1 • Verification of the Bjorken sum rule

• Estimate size and direction of NNLO correction

• Use C_1^{NS} in NNLO: $g_A/g_V = 1.256$

$\Delta(u+\overline{u})$	=	$0.840 \pm 0.007_{\rm stat} \pm 0.012_{\rm syst} \pm 0.015_{\rm evol}$
$\Delta(d+\overline{d})$	= -	$-0.429 \pm 0.007_{ m stat} \pm 0.012_{ m syst} \pm 0.015_{ m evol}$

Flavor separation: Difference asymmetry Phys. Lett. B 647 (2007) 8 & 690 (2010) 466 Phys. Lett. B 660 (2008) 458

Introduction

Test of Bjorken sum rule

Compass data (2011 data & new QCD fit included)

$$\Gamma_1^{NS}(Q^2) = \frac{1}{6} \frac{g_A}{g_V} C_1^{NS}(Q^2)$$
 $C^{NS} = 0.89 \ Q^2 = 3 \ (GeV/c)^2$

- Value from the neutron β decay: $|\frac{g_A}{g_V}| = 1.2701 \pm 0.0020$
- Mean Q^2 of the COMPASS data $Q^2 pprox 3~({
 m GeV}/c)^2$

• $g_A/g_V = 1.220 \pm 0.053$ (stat.) ± 0.095 (syst.) • 1.28 0.07 0.1 • Verification of the Bjorken sum rule

• Estimate size and direction of NNLO correction

• Use C_1^{NS} in NNLO: $g_A/g_V = 1.256$

$\Delta(u+\overline{u})$	=	$0.840 \pm 0.007_{\rm stat} \pm 0.012_{\rm syst} \pm 0.015_{\rm evol}$
$\Delta(d+\overline{d})$	= -	$-0.429 \pm 0.007_{ m stat} \pm 0.012_{ m syst} \pm 0.015_{ m evol}$

Flavor separation: Difference asymmetry Phys. Lett. B 647 (2007) 8 & 690 (2010) 466 Phys. Lett. B 660 (2008) 458

Test of Bjorken sum rule

^{SZ}D⁻ 0.1

0.08

).04

Compass data (2011 data & new QCD fit included)

$$\Gamma_1^{NS}(Q^2) = \frac{1}{6} \frac{g_A}{g_V} C_1^{NS}(Q^2) \qquad \qquad \mathsf{C}^{\mathsf{NS}} = 0.89 \ \mathsf{Q}^2 = 3 \ (\mathsf{GeV/c})^2$$

- Value from the neutron β decay: $|\frac{g_A}{g_V}| = 1.2701 \pm 0.0020$
- Mean Q^2 of the COMPASS data $Q^2 pprox 3 ~({
 m GeV}/c)^2$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Phys. Lett. B 690 (2010) 466–472

COMPASS Preliminary

 $0.06 - Q^2 = 3 (GeV/c)^2$

Direct gluon polarisation measurement via tagging PGF process

Non direct measurement of gluon polarisation - QCD fits

signal asymmetry from data

Large Q^2 : $Q^2 > 1 (GeV/c)^2$

Physical model: three processes (LO QCD)

Same decomposition for inclusive sample to determine A1LO

Introduction New DIS results Gluon polarization

Summarv

Optimization needed : "clean" (more PGF, "pure") sample with limited statistics or less PGF populated but larger sample

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Introduction New DIS results Gluon polarization

Summarv

ex: MC vs Data (sample: 2004) gluon polarization result

Effect of tuning clearly visible

Phys. Lett. B 718 (2013) 922

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

New asymmetries (1h) for low Q² 2006 and 2011 data included

NLO calculations M. Stratmann, B Jager, W. Vogelsang EPJC 44(2005) 533

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Krzysztof Kurek

S NCBJ

22/34

New asymmetries (1h) for low Q² 2006 and 2011 data included

NLO calculations M. Stratmann, B Jager, W. Vogelsang EPJC 44(2005) 533

COMPASS: potentially discriminated power on gluon polarisation

Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

New analysis - all-p⊤ method results Q² > 1 GeV²

Krzysztof Kurek

23/34

Minimalization procedure and covariant matrix is used for error estimation; simultaneously A_1^{LO} and $\Delta g/g$ is fitted; 1 hadron in the final state, no p_T cut!

Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

The method similar to all-p_T

Every event is weighted by these weights and asymmetries for signal and background in $(p_T^{D^0}, E_{D^0})$ intervals are simultaneously extracted. Gluon polarisation from signal asymmetry is then estimated.

Another way: extract gluon polarisation directly event-by event basis using weights with analyzing power:

$$w = f P_B \frac{S}{S+B} a_{LL} \bullet$$

Statistically optimised determination of gluon polarisation; takes into account anticorrelation between analyzing power and signal strength

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

D⁰ meson data selection

Considered events:

- $D^0 \rightarrow K\pi$ (BR: 4%)
- $D^* \rightarrow D^0 \pi_s (30\% D^0 \underline{tagged with} \ a D^*)$
 - $D^0 \rightarrow K\pi$
 - $D^0 \rightarrow K\pi\pi^0$ (BR: 13%) \rightarrow not directly reconstructed
 - $D^0 \rightarrow K\pi\pi\pi$ (BR: 7.5%)

• $D^0 \rightarrow sub(K)\pi$ \longrightarrow no RICH ID for Kaons ($p \le 9 \text{ GeV/c}$)

Selection to reduce the combinatorial background

- **Kinematical cuts:** Z_{D} and D^{0} decay angle (to reject colinear events with γ^{*} coming from the nucleon fragmentation), K and π momentum
- **RICH identification:** <u>K and π ID</u> + electrons rejected from the π_{e} sample
- Mass cut for the D^{*} tagged channels $(M[K\pi\pi_s] M[K\pi] M[\pi])$
- Neural Network qualification of events

Introduction New DIS results Gluon polarization

Summary

D⁰ meson reconstruction

Artificial Neutral Network qualification of events

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

D⁰ meson reconstruction

Artificial Neutral Network qualification of events

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Gluon polarization @ LO

Final gluon polarization result from open-charm in LO QCD

$$\left\langle \frac{\Delta g}{g} \right\rangle = -0.10 \pm 0.22 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \quad \left\langle \frac{\Delta g}{g} \right\rangle = -0.06 \pm 0.21 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$$

from asymmetries $\langle x_G \rangle = 0.11^{+0.11}_{-0.05} \qquad \mu^2 \approx 13 \frac{GeV^2}{c^2}$ Statistically optimised

Source	$\delta(\langle \Delta g/g \rangle)$	Source	$\delta\left(\langle \Delta g/g \rangle\right)$
Beam polarisation P_{μ}	0.005	s/(s+b)	0.007
Target polarisation P_t	0.005	False asymmetry	0.080
Assumption Eq. (9)	0.002	aLL Depolarisation factor D	0.015
Total uncertainty 0.086			

More details and asymmetries in bins - see: Phys.Rev. D 87 (2013) 052018

Source	$\delta\left(\langle \Delta g/g \rangle\right)$	Source	$\delta\left(\langle \Delta g/g \rangle\right)$
Beam polarisation P_{μ}	0.003	s/(s+b)	0.004
Target polarisation P_t	0.003	$a_{\rm LL}$	0.005
Dilution factor f	0.001	False asymmetry	0.080
Assumption, Eq. (9)	0.025		
Total uncertainty 0.084			

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Krzysztof Kurek

29/ 34

S NCBJ

A catalog of PDFs

Beyond collinear approximation - k_T dependence

LO, twist-2: 8 independent functions to parameterize structure

Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

For a transversely polarized nucleon (e.g. polarized in the $+\hat{x}$ -direction) the IPD $q_{\hat{x}}(x, \vec{b}_{\perp})$ is no longer symmetric due to the non-zero value of the spin-flip GPD E. This deformation is described by the gradient of the Fourier transform of E:

$$q_{\hat{x}}(x,\vec{b}_{\perp}) = \mathcal{H}(x,\vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \mathcal{E}(x,\vec{b}_{\perp}).$$
(7.12)

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

For a transversely polarized nucleon (e.g. polarized in the $+\hat{x}$ -direction) the IPD $q_{\hat{x}}(x, \vec{b}_{\perp})$ is no longer symmetric due to the non-zero value of the spin-flip GPD E. This deformation is described by the gradient of the Fourier transform of E:

$$q_{\hat{x}}(x,\vec{b}_{\perp}) = \mathcal{H}(x,\vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \mathcal{E}(x,\vec{b}_{\perp}).$$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Krzysztof Kurek

(7.12)

$$q_{\hat{x}}(x,\vec{b}_{\perp}) = \mathcal{H}(x,\vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \mathcal{E}(x,\vec{b}_{\perp}).$$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Krzysztof Kurek

(7.12)

Sivers asymmetry for gluons

Physical model: three basic processes @LO

$$\omega_{PGF} \equiv \omega^G = R_{PGF} f \sin(\phi_{2h} - \phi_s)$$

$$\omega_{LP} \equiv \omega^L = R_{LP} f \sin(\phi_{2h} - \phi_s)$$

 $\omega_{QCDC} \equiv \omega^C = R_{QCDC} f \sin(\phi_{2h} - \phi_s)$

$$A_{PGF}^{\sin(\phi_{2h}-\phi_s)} = -0.14 \pm 0.15(stat.) \pm 0.06(syst.) \text{ at } \langle x_G \rangle = 0.13 \quad \text{deuteron}$$

 $A_{PGF}^{\sin(\phi_{2h}-\phi_s)} = -0.26 \pm 0.09(stat.) \pm 0.08(syst.) \text{ at } \langle x_G \rangle = 0.15 \quad \text{proton !!}$

Summary

- The review of some updated and new results for longitudinal spin physics has been presented
- New results on gluon polarisation @ LO QCD approximation from high-p_T hadrons measurement has been shown in "all-p_T method"
- The determination of gluon polarisation @ LO as well as NLO QCD approximation from COMPASS open-charm data has been presented
- New results on gluon polarisation from new COMPASS QCD fits have been shown
- Preliminary result for Sivers asymmetry for gluons on deuteron and proton targets have been shown

Input parametrisation

- Reference scale $Q_0^2 = 1 (\text{GeV}/c)^2$
- Functional form are given at the reference scale Q_0^2 $\Delta q_{Si}(x|Q_0^2) = \eta_s x^{\alpha_s} (1-x)^{\beta_s} (1+\gamma_s x)/N_s$ $\Delta g(x|Q_0^2) = \eta_g x^{\alpha_g} (1-x)^{\beta_g} (1+\gamma_g x)/N_g$
 - $\Delta q_3(x|Q_0^2) = \eta_3 x^{\alpha_3} (1-x)^{\beta_3} / N_3$ $\Delta q_8(x|Q_0^2) = \eta_8 x^{\alpha_8} (1-x)^{\beta_8} / N_8$
- $\eta_3 = F + D = g_A/g_V$
 - $\eta_8 = 3F D$

 $\beta_{\rm g}$ is fixed

- Using the DGLAP equations:
- Obtain $\Delta q_{Si}(x, Q^2)$, $\Delta g(x, Q^2)$, $\Delta q_3(x, Q^2)$, $\Delta q_8(x, Q^2)$ at any scale Q^2

•
$$\chi^2 = \sum_{n=1}^{N_{exp}} \left[\sum_{i=1}^{N_n^{data}} \left(\frac{g_1^{fit} - \mathcal{N}_n g_{1,i}^{data}}{\mathcal{N}_n \sigma_i} \right)^2 + \left(\frac{1 - \mathcal{N}_n}{\delta \mathcal{N}_n} \right)^2 \right] + \chi^2_{positivity}$$

- Positivity: $|\Delta g(x)| < |g(x)|$ and $|\Delta (s(x) + \bar{s}(x))| < |s(x) + \bar{s}(x)|$
- Input: $g_1^{
 ho}$, $g_1^{
 ho}$, $g_1^{
 ho}$ and our $\Delta g/g$ measurement (Open Charm @ NLO)
- MSTW2008
- Overall: 28 free parameters and 679 data points

Systematic studies

- Remarks on the previously published fit:
 - Only 2 parametrisations
 - No systematic uncertainties
- Study impact of:
 - Different parametrisations
 - Reference scale Q_0^2
- χ^2 very stable
- \rightarrow Larger uncertainty compared to statistical one

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

NCB.

New analysis - all-p_T method A₁ compatibility check

$$A_1^{QCDC}(x_C) = A_1^{LP}(x_{Bj}) = A_1^{LO}(x)$$
; for $x_C = x_{Bj}$

It can be verified equality of the two asymmetries by performing test and select the best MC tuning ; Note that statistical weight is constructed on the MC basis

event(x Bj, x C, x g,)

name χ^2 HIPT_PSON_MS_FLUKA 1 8.1 2 HIPT_PSON_MS 8.8 3 HIPT_PSOFF_MS 3.9 HIPT_PSON_CQ 4 10.15 HIPT_PSON_MS_NOFL 6.9

DEF_PSON_CQ

DEF_PSON_MS

DEF_PSOFF_MS

6

7

8

Data selection: standard DIS cut on inclusive variables (large Q²) at least one charged hadron detected - no high-p_T cut ! for ANN information from one, leading hadron only is used

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

13.1

10.7

9.9

For a transversely polarized nucleon (e.g. polarized in the $+\hat{x}$ -direction) the IPD $q_{\hat{x}}(x, \vec{b}_{\perp})$ is no longer symmetric due to the non-zero value of the spin-flip GPD E. This deformation is described by the gradient of the Fourier transform of E:

$$q_{\hat{x}}(x, \vec{b}_{\perp}) = \mathcal{H}(x, \vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \mathcal{E}(x, \vec{b}_{\perp}).$$

non-zero spin-flip GPD E - existence of non-zero orbital momentum

For a transversely polarized nucleon (e.g. polarized in the $+\hat{x}$ -direction) the IPD $q_{\hat{x}}(x, \vec{b}_{\perp})$ is no longer symmetric due to the non-zero value of the spin-flip GPD E. This deformation is described by the gradient of the Fourier transform of E:

$$q_{\hat{x}}(x, \vec{b}_{\perp}) = \mathcal{H}(x, \vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \mathcal{E}(x, \vec{b}_{\perp}).$$

non-zero spin-flip GPD E - existence of non-zero orbital momentum

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Sea flavour helicity asymmetry $\Delta \bar{u} - \Delta d$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Krzysztof Kurek Krzysztof Kurek

DIS and SIDIS results

Gluon polarization The role of AOM Sivers asymmetry for gluons Summary

Flavour separation analysis

Compass data

• SIDIS

 $A_1^h = \frac{\sum e_q^2 [\Delta q(x) \int D_q^h(z) dz + \Delta \overline{q}(x) \int D_{\overline{q}}^h(z) dz]}{\sum e_q^2 [q(x) \int D_q^h(z) dz + \overline{q}(x) \int D_{\overline{q}}^h(z) dz]}$

- $D^h_q \neq D^h_{\overline{q}}$ yields quark and antiquark separation
- measured: $A_1^d, A_{1d}^{K\pm}, A_{1d}^{\pi\pm}, A_1^p, A_{1p}^{K\pm}, A_{1p}^{\pi\pm}$
- determined: $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s \equiv \Delta \bar{s}$
- system of linear equations in LO
- input: MRST04 unpolarised PDFs, DSS parametrisation of FFs (e⁺e⁻, DIS, hadron-hadron)

 $\int_{0.004}^{0.3} \Delta s(x) dx = -0.01 \pm 0.01 \pm 0.01$

DNS: De Florian, Navarro, Sassot, Phys. Rev. D71, 2005

DIS and SIDIS results

Gluon polarization The role of AOM Sivers asymmetry for gluons Summary

Flavour separation analysis

Phys. Lett. B 647 (2007) 8

Phys. Lett. B 690 (2010) 466

Compass data

- SIDIS $A_1^h = \frac{\sum e_q^2 [\Delta q(x) \int D_q^h(z) dz + \Delta \overline{q}(x) \int D_{\overline{q}}^h(z) dz]}{\sum e_q^2 [q(x) \int D_q^h(z) dz + \overline{q}(x) \int D_{\overline{q}}^h(z) dz]}$
- $D^h_q \neq D^h_{\overline{q}}$ yields quark and antiquark separation
- measured: $A_1^d, A_{1d}^{K\pm}, A_{1d}^{\pi\pm}, A_1^p, A_{1p}^{K\pm}, A_{1p}^{\pi\pm}$
- determined: $\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s \equiv \Delta \bar{s}$
- system of linear equations in LO
- input: MRST04 unpolarised PDFs, DSS parametrisation of FFs (e⁺e⁻, DIS, hadron-hadron)

 $\int_{0.004}^{0.3} \Delta s(x) dx = -0.01 \pm 0.01 \pm 0.01$

DNS: De Florian, Navarro, Sassot, Phys. Rev. D71, 2005

Systematic studies & results

Phys. Lett. B 718 (2013) 922

- Neural Network stability
- MC
- False Asymmetries
- δP_b , δP_t , δf
- A₁ parametrisation
- Simplification of the Formula for $\Delta G/G$

$\delta(\Delta G/G)_{NN}$	0.010
$\delta(\Delta G/G)_{MC}$	0.045
$\delta(\Delta G/G)_{\text{false}}$	0.019
$\delta(\Delta G/G)_{f,Pb,Pt}$	0.004
$\delta(\Delta G/G)_{A1}$	0.015
$\delta(\Delta G/G)_{\text{formula}}$	0.035
Total	0.063

$$\frac{\Delta G}{G} = 0.125 \pm 0.060 \pm 0.063$$
$$x_G = 0.09^{+0.08}_{-0.04} \qquad \left\langle \mu^2 \right\rangle = 3.4 (GeV/c)^2$$

	1 st point	2 nd point	3 rd point
ΔG/G	$0.15 \pm 0.09 \pm 0.09$	$0.08 \pm 0.10 \pm 0.08$	$0.19 \pm 0.17 \pm 0.14$
< _X >	0.07 ^{+0.05} -0.03	0.10 ^{+0.07} -0.04	0.17 +0.10 -0.06

These 3 points show no x_G dependence (within errors)

Introduction

New DIS results Gluon polarization Sivers asymmetry for gluons Summary

Difference asymmetry

Compass only

Idea: Phys.Lett.B230(1989)141,
SMC:Phys.Lett.B369(1996)93,

$$A_{d}^{\pi^{+}-\pi^{-}}(x) = A_{d}^{K^{+}-K^{-}}(x) = \frac{\Delta u_{v}(x) + \Delta d_{v}(x)}{u_{v}(x) + d_{v}(x)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) - \left(O_{\uparrow\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\downarrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\uparrow}^{h^{+}} - O_{\uparrow\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\uparrow\uparrow}^{h^{-}}\right)} \xrightarrow{A^{+-} = \frac{\left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{-}}\right) + \left(O_{\uparrow\downarrow}^{h^{+}} - O_{\uparrow\uparrow}^{h^{-}}\right)}{\left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{+}}\right)} \xrightarrow{A^{+} = \frac{\left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\uparrow\downarrow}^{h^{+}}\right)}{\left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right)} \xrightarrow{A^{+} = \frac{\left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right)}{\left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right) + \left(O_{\downarrow}^{h^{+}} - O_{\downarrow}^{h^{+}}\right)} \xrightarrow{A^{+}$$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Gluon polarisation @ NLO QCD

I.Bojak, M.Stratmann, Nucl.Phys.B 540 (1999) 345, I.Bojak, PhD th.

J.Smith, W.L.Neerven, Nucl.Phys.B 374 (1992)36), W.Beenakker H Kuijf, W.L.Neerven, J.Smith, Phys.Rev.D40(1989)54

Procedure for NLO calculations:

- 1. Aroma MC generator with Parton Shower-on describes COMPASS data very well
- PS simulates phase space for NLO correction - a_{LL} can be calculated event-by-event basis from theoretical formulas (as in LO case)
- light quark correction ~ A₁ which is taken directly from data
- 4. Asymmetries in bins used (rebinned in $p_T^{D^0}$ bins only)

Introduction New DIS results

Gluon polarization Sivers asymmetry for gluons Summary

g1 structure function for deuteron

Compass data 2002-2006 and world data

2002-2004 published in Phys. Lett. B 647 (2007) 8

2006 reanalysed, new NLO COMPASS fit Phys. Lett. B 753 (2016) 18

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

Introduction New DIS results

Gluon polarization Sivers asymmetry for gluons Summary

g1 structure function for proton

Compass data 2007 & 2011 and world data

Phys. Lett. B 690 (2010) 466-472

New 2011 proton data & new COMPASS NLO QCD fit

Phys. Lett. B 753 (2016) 18

Master formula for determination ΔG statistical weighting & ANN approach

$$\begin{aligned} \frac{\Delta G}{G}(x_{G}) &= \frac{A_{LL}^{2h}(x_{Bj}) + A^{corr}}{\beta} \\ \beta &= a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF,incl} R_{PGF}^{incl} (\frac{R_{L}}{R_{L}^{incl}} + \frac{R_{C}}{R_{L}^{incl}} \frac{a_{LL}^{C}}{D}) \\ A^{corr} &= -A_{1}(x_{Bj}) D \frac{R_{L}}{R_{L}^{incl}} - A_{1}(x_{C}) \beta_{1} + A_{1}(x'_{C}) \beta_{2} \end{aligned} \qquad \begin{aligned} \mathbf{R}^{is}_{LL} \\ \mathbf{a}_{LL} \\ \mathbf{D}^{is}_{LL} \\ \mathbf{h}_{L} \\ \mathbf$$

R's are fractions of the sub-processes (LO,PGF, QCDC) in high- p_T and inclusive samples, respectively;

 a_{LL} are so-called analyzing powers D is a depolarization factor.

- f,D,P_b can be directly obtained from data
- Remaining factors have to be obtained from MC
- ANN trained on MC samples, then used on real data
- Input variables for ANN trainning:
 - inclusive case: $x_{\rm Bi}^{}$ and Q^2
 - high- p_{T} : x_{Bj} , Q^{2} , $p_{L1,2}$, $p_{T1,2}$
- Weight used: $fDP_b \beta$
- Good data description with MC is a "key point" of the analysis

Systematics Studies

deuteron target

proton target

Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society ious Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

/ 34

The weighted method

Physical model: three basic processes @LO

leads to 12 eqs.:

$$p_{c}^{j} = \sum_{i=1}^{N_{c}} \omega_{i}^{j} = \tilde{\alpha}_{c}^{j} (1 + \{\beta_{c}^{G}\}_{\omega^{j}} A_{PGF}^{\sin(\phi_{2h} - \phi_{s})}(\langle x_{G} \rangle) + \{\beta_{c}^{L}\}_{\omega^{j}} A_{LP}^{\sin(\phi_{2h} - \phi_{s})}(\langle x_{Bj} \rangle) + \{\beta_{c}^{C}\}_{\omega^{j}} A_{QCDC}^{\sin(\phi_{2h} - \phi_{s})}(\langle x_{C} \rangle)) = \tilde{\alpha}_{c}^{j} (1 + A_{PGF}\{\beta^{G}\}_{\omega^{j}} + A_{LP}\{\beta^{L}\}_{\omega^{j}} + A_{QCDC}\{\beta^{C}\}_{\omega^{j}})$$

with 15 unknows: (3 asymmetries + 12 acceptances) but thanks to it is reduced to 12. *Here j stands for LO, QCDC and PGF, respectively

To determine asymmetries the minimalization procedure has been used: $\chi^2 = (\vec{N_{exp}} - \vec{N_{obs}})^T Cov^{-1} (\vec{N_{exp}} - \vec{N_{obs}})$

 $\vec{N_{obs}} = (\sum_{i=0}^{N_u} \omega_i^G, ..., \sum_{i=0}^{N_{d'}} \omega_i^C),$

$$N_{exp,j}^{c} = \tilde{\alpha}_{c}^{j} \left(1 + A_{PGF} \{ \beta^{G} \}_{\omega^{j}} + A_{LP} \{ \beta^{L} \}_{\omega^{j}} + A_{QCDC} \{ \beta^{C} \}_{\omega^{j}} \right)$$

Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society ious Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

 $\sim \sum_{N_c} \omega_x \omega_y$

New DIS results Gluon polarization Sivers asymmetry for gluons Data selection & preliminary results

Introduction

- Inclusive cuts:
 - Q²>1(GeV/c)²
 - 0.003 < x_{Bi} < 0.7
 - 0.1 < y < 0.9
- hadronic cuts
 - p₁ > 0.7 GeV/c
 - p_{T2} > 0.4 GeV/c
 - $z_1 > 0.1$
 - $z_2 > 0.1$
 - $z_1 + z_2 < 0.9$

 $A_{PGF}^{\sin(\phi_{2h}-\phi_s)} = -0.14 \pm 0.15(stat.) \pm 0.06(syst.)$ at $\langle x_G \rangle = 0.13$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

- Inclusive cuts:
 - Q²>1(GeV/c)²
 - $0.003 < x_{Bi} < 0.7$
 - 0.1 < y < 0.9
- hadronic cuts
 - $p_{T1} > 0.7 \text{ GeV/c}$
 - p_{T2} > 0.4 GeV/c
 - z₁ > 0.1
 - $-z_2 > 0.1$
 - $z_1 + z_2 < 0.9$

 $A_{PGF}^{\sin(\phi_{2h}-\phi_s)} = -0.26 \pm 0.09(stat.) \pm 0.08(syst.)$ at $\langle x_G \rangle = 0.15$

3rd Symposium of The Division for Physics of Fundamental Interactions of The Polish Physical Society Various Faces of QCD 2 8-9.10.2016, NCBJ, Świerk

