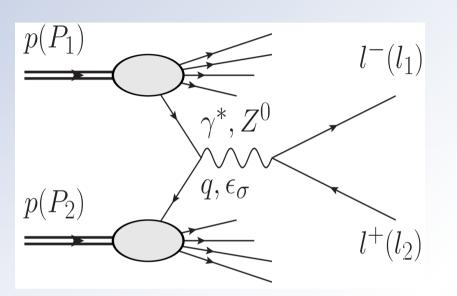

Lam-Tung relation breaking as a probe of gluon TMD

Leszek Motyka Jagiellonian University, Kraków

Świerk, 08.10.2016

Overview:


 Drell-Yan / Z⁰ production in pp collisions at the LHC

 Recent ATLAS measurement: precise data on dilepton I⁺ I⁻ angular distributions from Z⁰ decays and problems of collinear QCD at NNLO [JHEP 1608 (2016) 159 arXiv:1606.00689]

 This talk: k_T factorisation approach and inclusion of the g*g* channel → improved description of the data + demonstration of essential sensitivity of the DY dilepton angular distibutions to the shape of gluon TMD
 [Based on recent results obtained with Mariusz Sadzikowski and Tomasz Stebel, arXive:1609.04300]

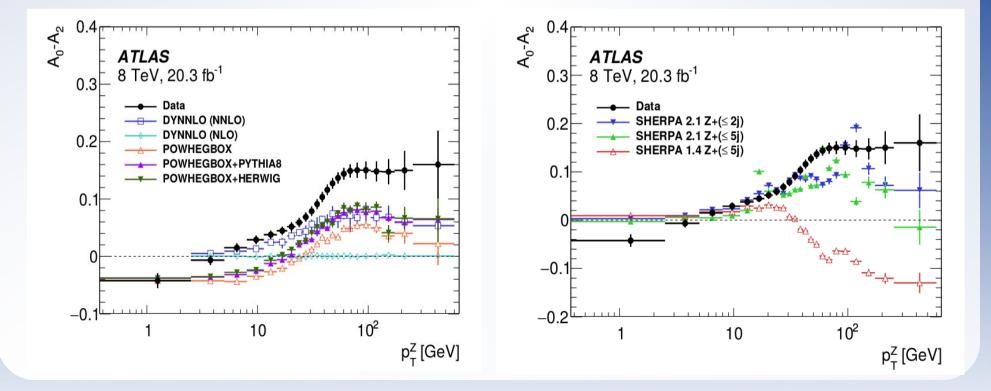
Drell-Yan process at the LHC: measured are dileptons Intermediate: γ^* or Z⁰ boson

- Measured are four-momenta of the lepton and antilepton
- Full information about the pair kinematics: invariant mass M, transverse momentum q_T, rapidity Y, and dilepton angular distribution
- 9 independent structure functions describe dilepton angular distribution for Z⁰
- 4 independent structure functions for γ* and even parity Z⁰ component
 3 angular coefficients A_i

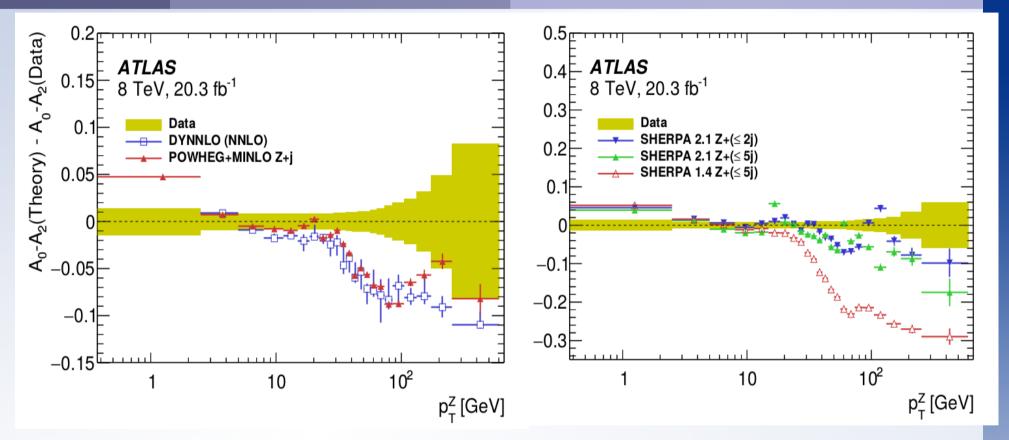
$$\left[\frac{d\sigma}{dY\,dM^2\,d^2q_T}\right]^{-1}\frac{d\sigma}{dY\,dM^2\,d^2q_T\,d\Omega_l} = \frac{3}{16\pi}\left[(1+\cos^2\theta) + \frac{1}{2}A_0\left(1-3\cos^2\theta\right) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\cos 2\phi\right]$$

Lam-Tung combination of angular coefficients

Lam and Tung: In Collins-Soper frame the difference of angular coefficients


$$\mathbf{A}_{\mathrm{LT}} = \mathbf{A}_{0} - \mathbf{A}_{2}$$

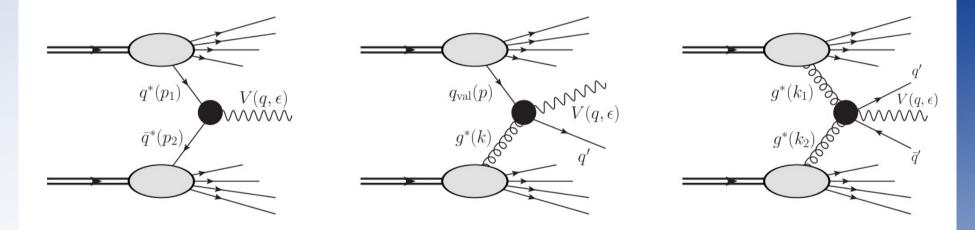
vanishes in the collinear QCD approximation at the leading twist, up to the NNLO


- A_{LT} is invariant under rotations in the XZ plane of the frame that is under rotations w.r.t. the Y axis – perpendicular to beams and boson momenta
- Enhanced sensitivity of A_{LT} to subtle effects: higher orders, higher twists, parton tranverse momentum

ATLAS measurement of Lam-Tung relation breaking ALT

- Measured are dilepton distributions at the Z⁰ peak
- All DY structure functions are measured and overall agreement is found with NNLO QCD predictions except of ...
- ... puzzling failure of NNLO QCD for the Lam-Tung combination
- MC codes at NNLO: DYNNLO, POWHEGBOX-PYTHIA and SHERPA fail to describe A_{LT}

Closer look at A_{LT} – what could be the source of discrepancy?



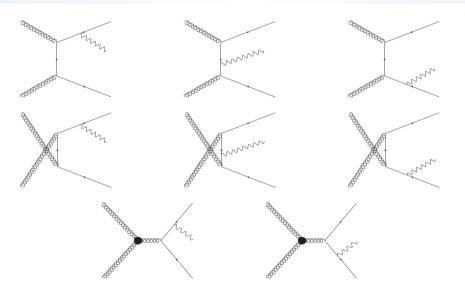
- At Z⁰ peak higher twists are irrelevant
- NNNLO calculation rather long term project
- Teryaev \rightarrow parton p_T as a possible source of Lam-Tung relation breaking \rightarrow

let us try to use the k_{τ} factorization framework

Theoretical framework: k_T factorization

Off-shell quarks and gluons → quark and gluon TMDs
 Channels: q^{*}q^{*} (from LO), q^{*}g^{*}, q^{*} g^{*} (from NLO) and g^{*}g^{*} (from NNLO)

Relation of angular distribution coeff-s to boson spin density matrix elements: L: 00, T: ++, --; LT: 0+, 0-, -0, +0; TT: +-, -+


High energy approximation

In high energy limit sea quarks come from gluons at the last splitting

- Valence quarks should be treated separately
- For pp collisions there are only valence quarks, no antiquarks: q_{val} q_{val}
 channel does not contribute
- Left are: q_{val}* g* and g*g* channels
- Valence quarks carry moderate transverse momentum as compared to gluons and sea quarks → we neglect the valence quarks TM and treat the q_{val}* g* ME as the known q_{val}g* ME

g*g* channel

- High energy limit for gluon polarizations
- The effective triple gluon vertex
- Gauge invariance of the amplitude verified
- Dependence of the DY structure fur on gluon TMD F(x, k_{τ}^2 , μ)

$$d\sigma_{\sigma\sigma'}^{(g^*g^*)} = \int dx_1 \int \frac{d^2 \mathbf{k}_1}{\pi \mathbf{k}_1^2} \mathcal{F}(x_1, \mathbf{k}_1^2, \mu_F) \int dx_2 \int \frac{d^2 \mathbf{k}_2}{\pi \mathbf{k}_2^2} \mathcal{F}(x_2, \mathbf{k}_2^2, \mu_F) \\ \times \frac{(2\pi)^4 \mathcal{H}_{\sigma\sigma'}}{2S} dPS_3(k_1 + k_2 \to p_3 + p_4 + q),$$

Models of gluon Transverse Momentum Distributions (TMDs)

- Jung-Hautmann from the CCFM equation
- Golec-Biernat Wusthoff as a quasi-collinear model
- LO BFKL from GBW input at x_{in} = 0.1

$$\mathcal{F}_{\rm BFKL}(x,k^2) = \frac{(1-x)^7}{k^2} \int_{1/2-i\infty}^{1/2+i\infty} \frac{ds}{2\pi i} k^{2s} \exp[\bar{\alpha}_{\rm s}\chi(s)\log(x_{\rm in}/x)]\tilde{f}_0(s)$$

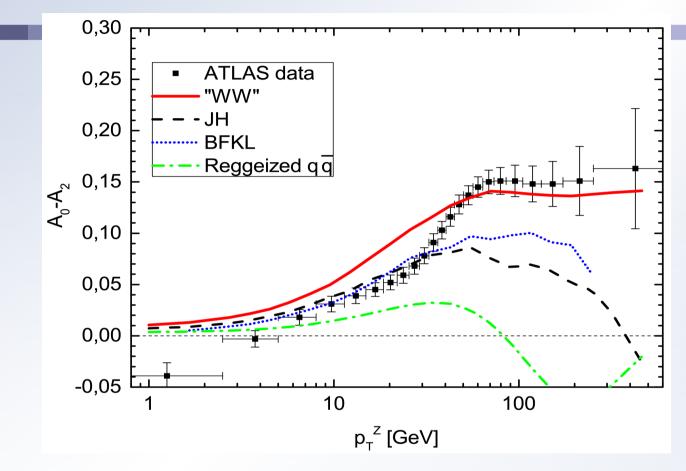
Simple Weizsacker-Williams-like model F ~ $1/k^2$ for large k^2 .

$$\mathcal{F}_{WW}(x,k^2) = \begin{cases} (N_1/k_0^2)(1-x)^7 (x^{\lambda}k^2/k_0^2)^{-b} & \text{for } k^2 \ge k_0^2 \\ (N_1/k_0^2)(1-x)^7 x^{-\lambda b} & \text{for } k^2 < k_0^2 \end{cases}$$

The central choice b=1, variations of b to test sensitivity of observabels to shape of gluon TMD

Reggeized Quark Parton Model approximation

- Instead of computing g*g* → q q V approximation may be adopted of g* → q* splitting followed by off-shell quark – antiquark fusion into the electroweak boson
- Jung-Hautmann \rightarrow sea quark TMD:

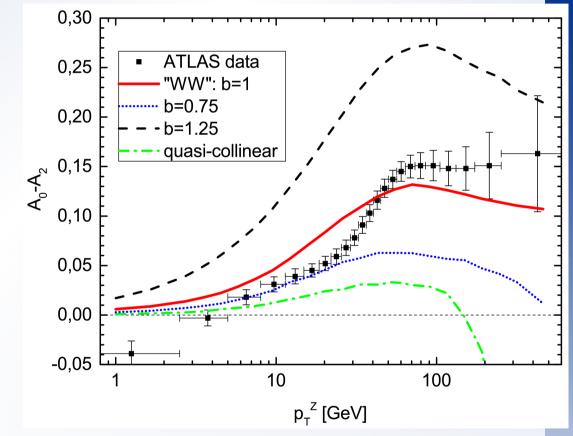

$$\begin{aligned} \mathcal{Q}_{\text{sea}}(x, \boldsymbol{p}_{T}^{2}, \mu_{F}) &= \frac{1}{\boldsymbol{p}_{T}^{2}} \int_{x}^{1} \frac{dz}{z} \int dk_{T}^{2} \Theta\left(\mu_{F}^{2} - \frac{\boldsymbol{p}_{T}^{2} + z(1-z)\boldsymbol{k}_{T}^{2}}{1-z}\right) \\ &\times \frac{\alpha_{\text{s}}(\mu_{F})}{2\pi} P_{q^{*}g^{*}}(z, \boldsymbol{p}_{T}^{2}, \boldsymbol{k}_{T}^{2}) \mathcal{F}(x, \boldsymbol{k}_{T}^{2}, \mu_{F}) \end{aligned}$$

where the TM dependent splitting function:

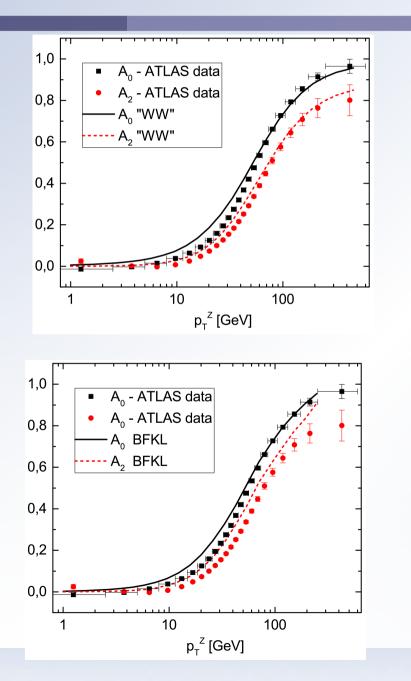
$$P_{q^*g^*}(z, \boldsymbol{p}_T^2, \boldsymbol{k}_T^2) = T_R \left(\frac{\boldsymbol{p}_T^2}{\boldsymbol{p}_T^2 + z(1-z)\boldsymbol{k}_T^2} \right)^2 \left[(1-z)^2 + z^2 + 4z^2(1-z)^2 \frac{\boldsymbol{k}_T^2}{\boldsymbol{p}_T^2} \right]$$

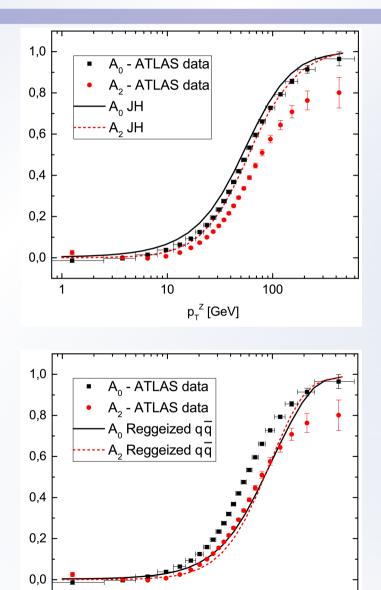
 We shall also test this approximation to g*g* contribution (Reggeized quark approximation)

Results: Lam-Tung relation breaking in physical models


- Best description of large p_T data in the "WW" model with 1/k_T² dependence of gluon TMD for large k_T a
- Reggeized quark model does not describe the data well

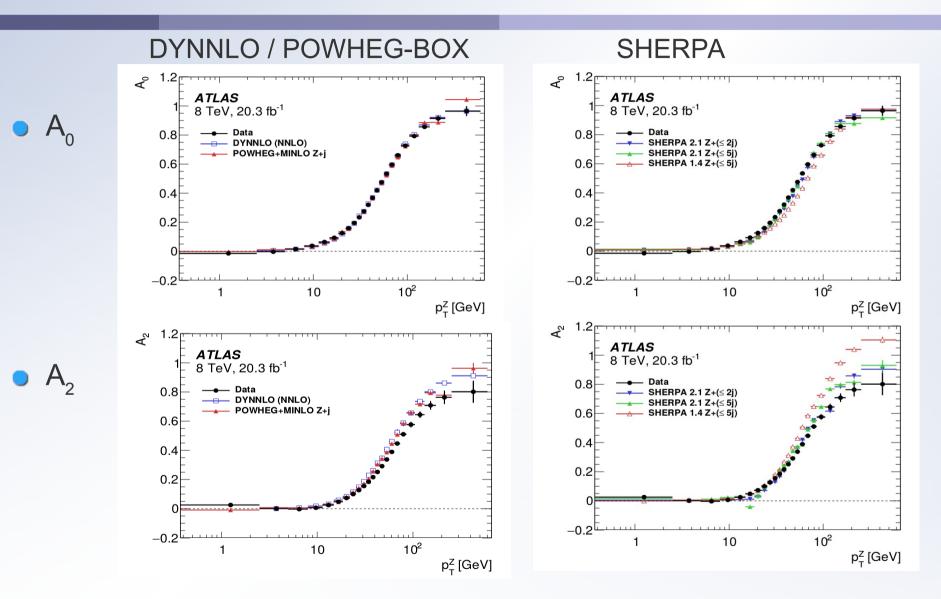
Results: Lam-Tung relation breaking in simplified models


• Model of gluon TMD with power-like behaviour: $(1 / k_{T}^{2})^{b}$


b=1 (central), b=0.75, b=1.25

- Quasi-collinear model of gluon TMD, a Gaussian with O(1 GeV) width
- Strong sensitivity to the shape of gluon TMD
- Quasi-collinear model far below the data → generation of the quark transverse momenta in the hard matrix elements is not sufficient → consistent with failure of collinear QCD at NNLO

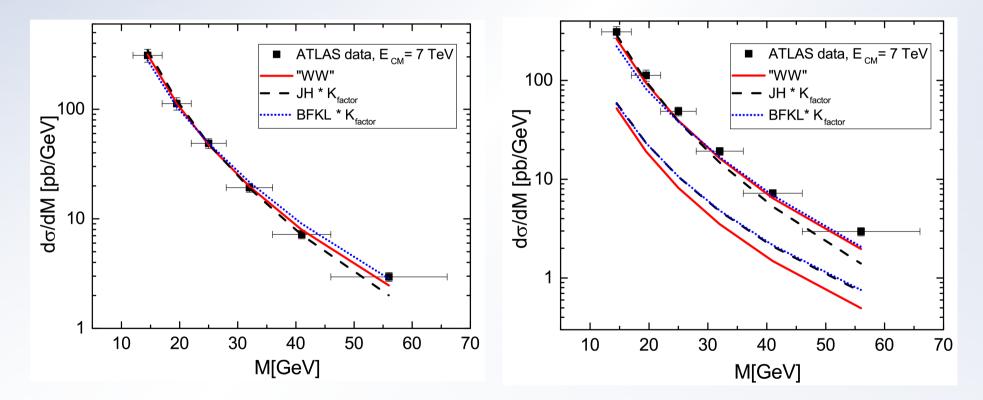
Tests of the models with other observables: A₀ and A₂



10

p₇^z [GeV]

100


Comparison to NNLO collinear QCD Monte Carlos

 A₂ is the difficult observable responsible for the puzzle of the large Lam-Tung relation breaking

Another check: DY pair mass distribution at lower masses (γ^* exchange region)

- Good agreement with data of the WW model assuming q_{val}g* + g*g* channels
- Dominance of the g*g* channel

Contributions of channels to Lam-Tung relation breaking

LT relation breaking at large p_{τ} comes from the dominant g*g* channel; the $q_{val} g^*$ channel does not lead to significant LT breaking at large p_{τ} 0,30 0.30 ATLAS data ATLAS data 0,25 0,25 'WW'' ww" JH 0,20 0,20 BFKL BFKL Reageized a a 0,15 $A_0 - A_2$ 0,10 0,05 0,05 0,00 0.00 -0,05 E -0,05 100 10 100 10 p_r^z [GeV] p_r^z [GeV] "WW JH Ratio R_{aa} of the $q_{val} g^*$ contribution 0.8 BFKL Reageized a a 0,6 to the cross-section to the total shows ഺഀ 0,4 dominance of the g*g* channel 0,2 0,0 10 100

p_T^z [GeV]

Conclusions

- Collinear QCD at NNLO fails to describe Lam-Tung relation breaking
 A_{LT} = A₀ A₂ in Z⁰ production at the LHC. It is mostly due to inaccurate description of A₂ coefficient of the lepton angular distribution
- In k_{T} factorization framework with g*g* channel is taken into accout A_{LT} at large p_{T} may be well described with a simple Weizsacker-Williams: ~1/k_T² shape of gluon TMD
- The WW model describes well also other DY observables
- A_{LT} exhibits strong sensitivity to the shape of gluon TMD and may be used as a sensitive probe to constrain / measure gluon TMDs

THANK YOU!