Hard exclusive processes in muon scattering at COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

Various faces of QCD 2

3rd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society

NCBJ, Świerk, October 8 – 9, 2016

Generalised Parton Distributions (GPDs)

- Provide comprehensive description of 3-D partonic structure of the nucleon one of the central problems of non-perturbative QCD
- GPDs can be viewed as correlation functions between different partonic states
- 'Generalised' because they encompass 1-D descriptions by PDFs or by form factors

(the simplest) example: Deeply Virtual Compton Scattering (DVCS)

Factorisation for large Q^2 and $|t| \ll Q^2$ 4 GPDs for each **quark flavour**

$H^q(x,\xi,t)$	$E^q(x,\xi,t)$
$\widetilde{H}^{q}(x,\xi,t)$	$\widetilde{E}^{q}(x,\xi,t)$

for DVCS gluons contribute at higher orders in α_s

GPDs and Hard Exclusive Meson Production

gluon contribution

factorisation proven only for σ_L σ_T suppressed by 1/Q²

wave function of meson (DA) additional non-perturbative term Chiral-even GPDs
helicity of parton unchanged $H^{q,g}(x,\xi,t)$ $E^{q,g}(x,\xi,t)$ $\widetilde{H}^{q,g}(x,\xi,t)$ $\widetilde{E}^{q,g}(x,\xi,t)$

Chiral-odd GPDs

helicity of parton changed (not probed by DVCS)

$H^q_T(x,\xi,t)$	$E_T^q(x,\xi,t)$
$\widetilde{H}^{q}_{T}(x,\xi,t)$	$\widetilde{E}_{T}^{q}(x,\xi,t)$

Flavour separation for GPDs example:

$$E_{\rho^{0}} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} + \frac{1}{3} E^{d(+)} + \frac{3}{4} E^{g} / x \right)$$

$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} - \frac{1}{3} E^{d(+)} + \frac{1}{4} E^{g} / x \right)$$

$$E_{\phi} = -\frac{1}{3} E^{s(+)} + \frac{1}{4} E^{g} / x$$

Diehl, Vinnikov
PLB, 2005

- contribution from gluons at the same order of $\alpha_{\!_{\rm S}}$ as from quarks

Most appealing aims of the GPD program

GPD a 3-dimensional image of the partonic structure of the nucleon

$$H(x, \xi=0, t) \rightarrow H(x, r_{y,z})$$

probability interpretation (Burkardt)

this talk

t-dependence of pure DVCS cross section on unpolarised protons

Contribution to the nucleon spin puzzleGPD E related to the orbital angular momentum

$$2J_{q} = \int x (H^{q}(x,\xi,0) + E^{q}(x,\xi,0)) dx$$

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_{z}^{q} \rangle + \langle L_{z}^{g} \rangle$$

this talk

Exclusive vector meson production on transversely polarised protons and deuterons

COMPASS QCD facility at CERN (SPS)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

~240 physicists, 12 countries + CERN, 24 institutions

L.

Versatility; Four (programs) in One (experiment)

COMPASS-I 2002-2011

hadron spectroscopy & exotic states π and K polarisabilities, chiral dynamics

polarised SIDIS

Polarised Drell-Yan

DVCS (GPDs) + unp. SIDIS

Exclusive ρ^{0} and ω production on transversely polarised protons and deuterons

COMPASS polarised target

z_{vtx} (cm)

Spin-dependent cross section for exclusive meson leptoproduction

$$\begin{bmatrix} \frac{\alpha_{em}}{8\pi^3} \frac{y^2}{1-\epsilon} \frac{1-x_{Bj}}{x_{Bj}} \frac{1}{Q^2} \end{bmatrix}^{-1} \frac{d\sigma}{dx_{Bj} dQ^2 dt d\phi d\phi_s}$$

$$= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{+-}^{--} \right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--} \right) - P_{\ell} \sqrt{\varepsilon(1-\varepsilon)} \sin \phi \operatorname{Im} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--} \right) \end{bmatrix}$$

$$- S_L \left[\varepsilon \sin(2\phi) \operatorname{Im} \sigma_{+-}^{++} + \sqrt{\varepsilon(1+\varepsilon)} \sin \phi \operatorname{Im} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--} \right) \right] + S_L P_\ell \left[\sqrt{1-\varepsilon^2} \frac{1}{2} \left(\sigma_{++}^{++} - \sigma_{+-}^{--} \right) - \sqrt{\varepsilon(1-\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} - \sigma_{+0}^{---} \right) \right] \right]$$

$$- S_T \left[\sin(\phi - \phi_S) \left(\operatorname{Im} \left(\sigma_{+-}^{++} + \varepsilon \sigma_{00}^{+-} \right) + \frac{\varepsilon}{2} \sin(\phi + \phi_S) \left(\operatorname{Im} \sigma_{+-}^{++} \right) + \sqrt{\varepsilon(1+\varepsilon)} \sin \phi_S \left(\operatorname{Im} \sigma_{+-}^{++} \right) \right] \right]$$

$$+ S_T P_\ell \left[\sqrt{1-\varepsilon^2} \cos(\phi - \phi_S) \left(\operatorname{Re} \sigma_{++}^{++} \right) - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi - \phi_S) \left(\operatorname{Re} \sigma_{++}^{-+} \right) \right] \right]$$

 σ_{mn}^{ij} : helicity-dependent photoabsorption cross sections and interference terms

$$\sigma_{mn}^{ij}(x_B,Q^2,t) \propto \sum (M_m^i)^* M_m^j$$

$$M_m^i$$
: amplitude for subprocess $\gamma^* p \rightarrow V p'$ with photon helicity *m* and target proton helicity *i*

$$\epsilon = \frac{1 - y - \frac{1}{4}y^{2}\gamma^{2}}{1 - y + \frac{1}{2}y^{2} + \frac{1}{4}\gamma^{2}}$$
$$\gamma = 2x_{Bj}M_{P}/Q$$

Azimuthal asymmetries of cross section for exclusive meson leptoproduction

 $\sigma_{\boldsymbol{0}}$ - 'unpolarised cross section' $\sigma_0 = \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--} \right) + \epsilon \sigma_{00}^{++} = \sigma_L + \epsilon \sigma_T$

Selections for exclusive ρ^0 sample (similar selections for ω)

$$\begin{split} &1\,({\rm GeV/c})^2 < Q^2 < 10\,({\rm GeV/c}^2)\\ &W > 5\,({\rm GeV/c}^2)\\ &0.1 < y < 0.9\\ &0.003 < x_{Bj} < 0.35\\ &|E_{miss}| < 2.5\,GeV\\ &0.1\,({\rm GeV/c})^2 < p_T^2 < 0.5\,({\rm GeV/c})^2 \end{split}$$

NH₃ target – transversely polarised protons

All charged particles measured except recoil nucleon

shape of semi-inclusive background from MC (LEPTO with COMPASS tuning + simulation of spectrometer response + reconstruction as for real data)

MC weighted using ratio between real data and MC for wrong charge combination sample $(h^+h^+ + h^-h^-)$

$$w(E_{miss}) = \frac{N_{RD}^{h+h+}(E_{miss}) + N_{RD}^{h-h-}(E_{miss})}{N_{MC}^{h+h+}(E_{miss}) + N_{MC}^{h-h-}(E_{miss})}$$

Normalization of MC to the real data using two component fit Gaussian function (signal) + shape from MC (bkg)

asymmetries small, compatible with 0, except $A_{UT}^{\sin \varphi_s} = -0.019 \pm 0.008 \pm 0.003$

indication of H_T, 'transversity' GPD, contribution

Transverse target spin asymmetries for exlusive ρ^0 production on p^{\uparrow}

Single spin asymmetries

- predictions of GPD model of Goloskokov-Kroll
- reasonable agreement with GK model (also for not-shown double spin asym.)

 A_{UT} contains twist-2 terms depending on $E^{q,g}$

its small values due to approximate cancellation of contributions from E^u and E^d , $E^u \approx -E^d$

larger effects expected for exclusiveo production

Azimuthal asymmetries for exlusive () production on p¹

Single spin asymmetries

new result, subm. to Nucl.PB

when 'global' comparison to the data no clear preference for any version

Comparison to HERMES asymmetries for ω production on p^

✓ Note: contribution of pion pole decreases with W

-> each experiment to be compared to corresp. predictions

COMPASS uncertainties smaller by a factor > 2

✓ within large errors combined HERMES data compatible with all 3 scenarios

✓ Future measurements at JLab12 EPJ A48 (2012) 187 expected to resolve the issue of $\pi\omega$ transition form factor

Deeply Virtual Compton Scattering off unpolarised protons

Exclusive single photon production cross section

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin (e_{μ} & P_{μ})

$$d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Beam Charge & Spin Difference

Interplay of DVCS and BH at 160 GeV

BH dominatesBH and DVCS at the same levelDVCS dominatesexcellent
reference yieldaccess to DVCS amplitude
through the interferencestudy of do

The COMPASS set-up for the GPD program (starting from 2012)

Main new equipments

ECAL2

2.5m-long Liquid H₂ Target

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol **ECALO** Calorimeter

Shashlyk modules + MAPD readout $\sim 2 \times 2 \text{ m}^2$, $\sim 2200 \text{ ch}$.

Mounting of Recoil Proton Detector ('CAMERA') in clean area at CERN

Recoil particle reconstruction in CAMERA

$$\begin{split} &\mathsf{E}_{\mathsf{loss}} \sim \sqrt{(\mathsf{Ampl}_{\mathsf{up}} \times \mathsf{Ampl}_{\mathsf{down}})} \\ &z_{\mathsf{A},\mathsf{B}} \sim (\mathsf{t}_{\mathsf{up}} - \mathsf{t}_{\mathsf{down}})_{\mathsf{A},\mathsf{B}} \\ &\mathsf{ToF} = (\mathsf{t}_{\mathsf{up}} + \mathsf{t}_{\mathsf{down}})_{\mathsf{A},\mathsf{B}} \\ &\beta = \mathsf{DoF} / \mathsf{ToF} \end{split}$$

counting rate: > 5 MHz in ring A ~ 1 MHz in ring B

Proton signature clearly visible after exclusivity selections

Selection of exclusive single photon events

Estimate of π^0 background

Major source of background for exclusive photon events

Two cases:

- Visible; detected second γ (below DVCS threshold) => events rejected from final sample
- **Invisible**; one γ lost => estimated from MC normalised to π^0 peak for 'visible' sample

Relative contributions from both processes to π^0 background estimated from combined fits to the distributions of 'exclusivity variables' (M_X^2 , $\Delta \phi$, Δp_T) and $E_{miss} = v - E_{\gamma} + t/(2m_p^2)$

for normalization of BH MC to the data beam flux measurement used

- dominant BH process at large ν (small x_{BJ}) clearly visible
- shape of $\boldsymbol{\phi}$ distribution reproduced well by MC
- estimates of π^0 background contributing at small v (large x_{BJ})
- at small v (large x_{BJ}) an excess of events above BH + π^0 background

Signal of DVCS

Transverse imaging of the proton using $d\sigma^{DVCS}/dt$

DVCS cross section and t-slope

Comparison of t-slope B to HERA results

Model independent result

From 3 weeks of 2012 commissioning data the first measurement of B-slope for DVCS at x_{Bi} above HERA range

COMPASS-II time lines

Part of the COMPASS-II proposal approved and scheduled by CERN

- > 2012: pion and kaon polarisabilities (Primakoff) + comissioning and pilot run for DVCS
- > 2013-2014: long SPS/LHC shutdown
- > 2014-2015: Drell-Yan measurements with transversely polarised protons (NH₃ target)
- > 2016-2017: stage 1 of GPD program and in parallel SIDIS (LH target)
- 2018: Drell-Yan measurements with transversely polarised protons (NH₃ target)

<u>Measurements to be pursued at COMPASS-II > 2020 (subject to a new proposal)</u>

- ✓ stage 2 of GPD program with transversely polarised NH₃ target and RPD
- ✓ SIDIS (high statistics) from transversely polarised deuteron and proton targets
- ✓ Drell-Yan on transversely polarised deuterons, unpolarised protons and nuclear targets
- ✓ hadron spectroscopy program with high-intensity separated kaon and antiproton beams

Backup

COMPASS acceptance for DVCS (1)

Symmetric acceptance in $\phi\,$ leads to cancellation of the interference terms when integrated over $\phi\,$

Role of pion exchange

- Effect known since early photoproduction experiments
- At COMPASS kinematics:
 - small for $\rho^{\rm 0}$ production
 - sizable for ω production
- Unnatural parity exchange process

 → impact on helicity-dependent observables
- Crucial for description of SDMEs for excl. ω production
 → Goloskokov and Kroll, Eur. Phys. J. A50 (2014) 9, 146
- Sign of $\pi\omega$ form factor not resolved from SDMEs data \rightarrow azimuthal asymmetries more sensitive

