## Different aspects of charm production

Antoni Szczurek

Institute of Nuclear Physics (PAN), Kraków, Poland Rzeszów University, Rzeszów

Faces of QCD

Świerk, Poland, October 8-9, 2016



・ロト ・ 留 ト ・ ヨ ト ・ ヨ ト

## 3-step process



Production of cc

Production o

# Dominant mechanisms of $Q\bar{Q}$ production

• Leading order processes contributing to  $Q\bar{Q}$  production:



- gluon-gluon fusion dominant at high energies
- $q\bar{q}$  anihilation important only near the threshold
- some of next-to-leading order diagrams:



NLO contributions  $\rightarrow$  K-factor



(日)

## $k_{t}$ -factorization (semihard) approach



- charm and bottom quarks production at high energies
   → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections

LO  $k_t$ -factorization approach  $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$  $\Rightarrow Q\bar{Q}$  correlations

multi-differential cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \sum_{l,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{lj \to Q\bar{Q}}|^2} \\ &\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_l(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2) \end{aligned}$$

- off-shell  $\overline{|\mathcal{M}_{gg \to Q\bar{Q}}|^2} \longrightarrow$  Catani, Ciafaloni, Hautmann (rather long formula)
- major part of NLO corrections automatically included
- $\mathcal{F}_i(x_1, \kappa_{1,t}^2), \mathcal{F}_j(x_2, \kappa_{2,t}^2)$  unintegrated parton distributions

• 
$$x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2),$$
  
 $x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2),$  where  $m_{i,t} = \sqrt{p_{i,t}^2 + m_Q^2}.$ 



Production of cc̄ Production of cc̄c in DPS SPS cc̄cc̄ production in k<sub>1</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

#### Unintegrated parton distribution functions

- $k_t$ -factorization  $\rightarrow$  replacement:  $p_k(x, \mu_F^2) \longrightarrow \mathcal{F}_k(x, \kappa_t^2, \mu_F^2)$
- PDFs  $\longrightarrow$  UPDFs

$$xp_k(x,\mu_F^2) = \int_0^\infty d\kappa_t^2 \mathcal{F}(x,\kappa_t^2,\mu_F^2)$$

- UPDFs needed in less inclusive measurements which are sensitive to the transverse momentum of the parton
- gg-fusion dominance  $\Rightarrow$  great test of existing unintegrated gluon densities! especially at LHC (small-x)

several models:

- Jung, Kwiecinski (CCFM, wide x-range)
- Kimber-Martin-Ryskin (higher x-values)
- Kutak-Stasto (small-x, saturation effects)
- Ivanov-Nikolaev, GBW, Karzeev-Levin, etc.



# Fragmentation functions technique



- fragmentation functions extracted from  $e^+e^-$  data
- often used: Braaten et al., Kartvelishvili et al., Peterson et al.
- rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$\frac{d\sigma(y, p_t^M)}{dyd^2 p_t^M} \approx \int \frac{D_{Q \to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_t^Q)}{dyd^2 p_t^Q} dz$$

where: 
$$p_t^Q = \frac{p_t^M}{z}$$
 and  $z \in (0, 1)$ 

• approximation:

rapidity unchanged in the fragmentation process  $\rightarrow y_Q \approx y_M$ 

Production of *D* mesons in this framework:

Maciula, Szczurek, Phys. Rev. D87 (2013) 094022.



Production of cccc in DPS SPS cccc production in ky-factorization - Perturbative parton splitting - Gluon fragmentation to D meson •0000000

#### Production of cccc



Łuszczak, Maciuła, Szczurek, Phys. Rev. D85 (2012) 014905.



(日)

#### Formalism

Consider reaction:  $pp \rightarrow c\bar{c}c\bar{c}X$ 

Modeling double-parton scattering Factorized form:

$$\sigma^{DPS}(pp \to c\bar{c}c\bar{c}X) = \frac{1}{2\sigma_{eff}}\sigma^{SPS}(pp \to c\bar{c}X_1) \cdot \sigma^{SPS}(pp \to c\bar{c}X_2).$$

The simple formula can be generalized to include differential distributions

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_3 dy_4 d^2 p_{2t}}$$

 $\sigma_{\rm eff}$  is a model parameter (15 mb).

Found e.g. from experimental analysis of four jets (see also Siódmok et an in principle does not need to be universal.

## Formalism

$$d\sigma^{DPS} = \frac{1}{2\sigma_{eff}} F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2) d\sigma_{gg \to c\bar{c}}(x_1, x_1', \mu_1^2) d\sigma_{gg \to c\bar{c}}(x_2, x_2', \mu_2^2) dx_1 dx_2 dx_1' dx_2'.$$

 $F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2), F_{gg}(x_1'x_2', \mu_1^2, \mu_2^2)$ are called double parton distributions

dPDF are subjected to special evolution equations single scale evolution: Snigirev double scale evolution: Ceccopieri, Gaunt-Stirling



・ロト ・ 留 ト ・ ヨ ト ・ ヨ ト

Production of cc̄ Production of cc̄cc̄ in DPS SPS cc̄cc̄ production in k<sub>1</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

## Energy dependence of cccc production



Luszczak, Maciula, Szczurek, Phys. Rev. **C86** (2012) 014905 spectacular result: Already at the LHC production of two pairs as probable as production of pair.

#### DPS in $k_t$ -factorization

each step:





## DPS in $k_t$ -factorization

Generalize the LO collinear approach to

 $k_t$ -factorization approach.

More complicated (more kinematical variables) as momenta of outgoing

partons are less correlated

We need information about each quark and antiquark

|                                                                       | do                                            |                                     |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|--|--|--|
| $dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t} dy_3 dy_4 d^2 p_{3,t} d^2 p_{4,t}$ |                                               |                                     |  |  |  |
| 1                                                                     | dσ                                            | dσ                                  |  |  |  |
| $2\sigma_{eff}$                                                       | $\frac{1}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}}$ | $dy_3 dy_3 d^2 p_{3,t} d^2 p_{4,t}$ |  |  |  |



イロト イポト イヨト イヨト

(1)

#### DPS in $k_t$ -factorization

Each individual scattering in the  $k_t$ -factorization approach

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \frac{1}{16\pi^2 \hat{s}^2}$$

$$\int \overline{|\mathcal{M}_{off}|^2} \delta\left(\vec{k}_{1t} + \vec{k}_{2t} - \vec{p}_{1t} - \vec{p}_{2t}\right) \mathcal{F}(x_1, k_{1t}^2, \mu^2) \mathcal{F}(x_2, k_{2t}^2, \mu^2)} \frac{d^2 k_{1t}}{\pi} \frac{d^2 k_{2t}}{\pi}$$

$$\frac{d\sigma}{dy_3 dy_4 d^2 p_{3,t} d^2 p_{4,t}} = \frac{1}{16\pi^2 \hat{s}^2}$$

$$\int \overline{|\mathcal{M}_{off}|^2} \delta\left(\vec{k}_{3t} + \vec{k}_{4t} - \vec{p}_{3t} - \vec{p}_{4t}\right) \mathcal{F}(x_3, k_{3t}^2, \mu^2) \mathcal{F}(x_4, k_{4t}^2, \mu^2)} \frac{d^2 k_{3t}}{\pi} \frac{d^2 k_{4t}}{\pi}$$

Effectively 16 dimensions, Monte Carlo method Maciula, Szczurek, hep-ph-1301.4469, Phys. Rev. **D87** (2013) 074039.

### Single parton scattering $2 \rightarrow 4$ process?



#### Only about 1 % at high energies

Much smaller than DPS production of cccc



Image: A math a math

## SPS in $k_t$ -factorization approach



W. Schäfer, A. Szczurek, Phys. Rev. **D85** (2012) 094029. (not all diagrams) include gluon transverse momenta A. van Hameren, R. Maciula and A. Szczurek, arXiv:1504.06490, Phys. Lett. **B748** (2015) 737.

#### Basic formulae

Within the  $k_t$ -factorization approach the SPS cross section for  $pp \rightarrow c\bar{c}c\bar{c}X$  reaction can be written as

$$d\sigma_{pp\to c\bar{c}c\bar{c}\bar{c}} = \int dx_1 \frac{d^2 k_{1t}}{\pi} dx_2 \frac{d^2 k_{2t}}{\pi} \mathcal{F}(x_1, k_{1t}^2, \mu^2) \mathcal{F}(x_2, k_{2t}^2, \mu^2) d\hat{\sigma}_{gg\to c\bar{c}c\bar{c}\bar{c}} .$$
(2)

The elementary cross section in Eq. (2) can be written somewhat formally as:

$$d\hat{\sigma} = \frac{d^{3}p_{1}}{2E_{1}(2\pi)^{3}} \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \frac{d^{3}p_{3}}{2E_{3}(2\pi)^{3}} \frac{d^{3}p_{4}}{2E_{4}(2\pi)^{3}} (2\pi)^{4} \delta^{4}(p_{1}+p_{2}+p_{3}+p_{4}-k_{1}-k_{2}) \times \frac{1}{\mathrm{flux}} \overline{|\mathcal{M}_{g^{*}g^{*} \to c\bar{c}c\bar{c}\bar{c}}(k_{1},k_{2})|^{2}}, \qquad (3)$$

where only dependence of the matrix element on four-vectors of gluons  $k_1$  and  $k_2$  is made explicit.

イロト イポト イヨト イヨト

#### Matrix element squared

Denoting by  $\mathcal{M}^{\alpha}$  the amplitude with the color of one off-shell gluon highlited explicitly we have

$$\sum_{\alpha} \left| \mathcal{M}^{\alpha} \right|^{2} = \sum_{\alpha} \left| \sqrt{2} \sum_{i,j} \mathcal{M}_{ij} \mathcal{T}^{\alpha}_{ij} \right|^{2} = \sum_{i,j,k,l} \mathcal{M}_{ij} \mathcal{M}^{*}_{kl} \left( \delta_{ik} \delta_{lj} - \frac{1}{N_{c}} \delta_{ij} \delta_{kl} \right) = \sum_{i,j} \left| \mathcal{M}_{ij} \right|^{2}$$
(4)

Matrix element squared with off-shell initial gluons calculated with an automated code of A. van Hameren

(Dyson-Schwinger recursion method, JHEP. 01 (2013) 078.)

Spinor helicity representation

Monte Carlo generation of events and constructing distributions from the kinematically complete weighted events

A D F A P F A D F A D F

### Results for $k_t$ -factorization approach



 $\mu_{f}^{2} = \left(\sum_{i}^{4} m_{i,t}\right)^{2}$ k<sub>t</sub>-factorization and collinear results similar



• • • • • • • • • • •

#### Results for $k_t$ -factorization approach



Figure:  $Y_{cc} = (y_c + y_c)/2$  (left panel) and  $Y_{c\bar{c}} = (y_c + y_{\bar{c}})/2$  (right panel).

 $\mu_{f}^{2} = \left(\sum_{i}^{4} m_{i,t}\right)^{2}$ k<sub>t</sub>-factorization and collinear results similar



(日)

### Results for $k_t$ -factorization approach



Figure:  $\Delta Y_{cc} = y_c - y_c$  (left panel) and  $\Delta Y_{c\bar{c}} = y_c - y_{\bar{c}}$  (right panel).

(日)

 $\mu_{f}^{2} = \left(\sum_{i}^{4} m_{i,t}\right)^{2}$ 

#### Results for $k_t$ -factorization approach



Figure:  $M_{cc}$  (left panel) and  $M_{c\bar{c}}$  (right panel).





Image: A math a math

### Results for $k_t$ -factorization approach



Figure: Azimuthal angle correlations between two c quarks (left panel) and between c and  $\bar{c}$  (right panel).

 $\mu_t^2 = \left(\sum_{i}^4 m_{i,t}\right)^2$ k<sub>t</sub>-factorization gives more decorrelation than collinar-factorization



(日)

## Results for $k_t$ -factorization approach





## Results for $k_t$ -factorization approach



Figure: Distributions in  $D^0 D^0$  invariant mass (left) and in azimuthal angle between both  $D^0$ 's (right) within the LHCb acceptance. The DPS contribution (dashed line) and the SPS contribution within the  $k_t$ -factorization approach (dashed-dotted line). The collinear SPS result from our previous studies (dotted line).



(日)

### Parton splitting mechanism

There are perturbative mechanisms not included in conventional DPS.



Gaunt, Maciuła, Szczurek, Phys. Rev. D90 (2014) 054017.



・ロト ・ 同ト ・ ヨト ・

### A bit of formalism for parton splitting

#### Conventional DPS:

$$\begin{split} \sigma(2v2) &= \frac{1}{2} \frac{1}{\sigma_{\text{eff},2v2}} \int dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t} \frac{1}{16\pi \hat{s}^2} \overline{|\mathcal{M}(gg \to c\bar{c})|^2} \, x_1 x_1' x_2 \hat{x_2} \\ &\times D^{gg}(x_1, x_2, \mu_1^2, \mu_2^2) \, D^{gg}(x_1, x_2, \mu_1^2, \mu_2^2) \end{split}$$

#### Parton splitting DPS

$$\sigma(2v1) = \frac{1}{2} \frac{1}{\sigma_{\text{eff},2v1}} \int dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t} \frac{1}{16\pi \hat{s}^2} \overline{|\mathcal{M}(gg \to c\bar{c})|^2} x_1 x_1' x_2 x_2' \\ \times \left( \hat{D}^{gg}(x_1', x_2', \mu_1^2, \mu_2^2) D^{gg}(x_1, x_2, \mu_1^2, \mu_2^2) + D^{gg}(x_1', x_2', \mu_1^2, \mu_2^2) \hat{D}^{gg}(x_1, x_2, \mu_1^2, \mu_2^2) \right)$$

There are two different normalization parameters. They are related in a geometrical picture.

Presence of the two components leads to a dependence of effective parameters different kinematical variables.

## Parton splitting vs conventional DPS



Asymmetric 1v2 and 2v1 contributions



(日)

### Parton splitting vs conventional DPS



#### Rapidity and factorization scale dependence

There could be also transverse momentum dependence.



・ロト ・ 同ト ・ ヨト ・

## Parton splitting vs conventional DPS





▲□▶ ▲□▶ ▲ □▶ ▲

Э

## Parton splitting vs conventional DPS





(日)

 $\sigma_{eff}$  is no longer a constant

# Gluon fragmentation to D mesons

- Kniehl and Kramer discussed several fragmentation of a parton (gluon, u, d, s, ū, d, š, c, c) to D mesons
- Important contribution to inclusive production of D mesons in  $p\bar{p}$  collisions comes from  $g \rightarrow D$  (Kniehl, Kramer, Schienbein, Spiesberger)
- Similar calculation in k<sub>t</sub>-factorization by Karpishkov, Nefedov, Saleev, Shipilova, 2015.

Good description of D meson transverse momentum distributions at the LHC (similar to Maciula, Szczurek).

• What are consequences of the "new" mechanism for double *D* meson production?

(Maciula, Saleev, Shipilova, Szczurek - Phys. Lett. B758 (2016) 458.)



A D F A P F A D F A D F

## DGLAP evolution of fragmentation functions

Fragmentation functions fulfill the DGLAP equation:

$$\frac{d}{dln\mu_{f}^{2}}D_{a}(x,\mu_{f}) = \frac{a_{s}(\mu)}{2\pi}\sum_{b}\int_{x}^{1}\frac{dy}{y}P_{a\rightarrow b}^{T}(y,a_{s}(mu))D_{b}\left(\frac{x}{y},\mu_{f}\right)$$

where  $a = g, u, \overline{u}, d, \overline{d}, s, \overline{s}, c, \overline{c}$ 

Initial conditions:

$$D_c(z, \mu_0^2) = N_c \frac{z(1-z)^2}{((1-z)+\epsilon)^2}$$
  
$$D_g(z, \mu_0^2) = 0.$$

In our case we will take:  $\mu^2 = m_t^2$ 

Fragmentation functions fitted (with massless DGLAP evolution) to  $e^+e^-$  data (with mass effects in the cross section)

A consequence of the evolution is a much smaller contribution of  $gg \rightarrow c\bar{c} \rightarrow D$  mechanism at intermediate and large  $p_t$ and appearence of new terms.



## Single D meson production



Figure: Left and right panels correspond to two different rapidity intervals. The Peterson  $c \rightarrow D$  FF (solid lines) are compared to the second scenario calculations with the KKKS08 FF (long-dashed lines) with  $c \rightarrow D$  (dotted) and  $g \rightarrow D$  (short-dashed) components that undergo DGLAP evolution equation.

Both methods describe inclusive D meson data



(日)

#### New mechanisms



Figure: A diagrammatic illustration of the considered mechanisms.



## List of mechanisms for double D meson production

• our old mechanism:

 $(gg \rightarrow c\bar{c}) \otimes (gg \rightarrow c\bar{c})$ 

and double fragmentation  $c \rightarrow D$  or  $\bar{c} \rightarrow \bar{D}$ 

with fragmentation functions with DGLAP evolution.

• a new SPS mechanism:

 $gg \to g(\to D)g(\to D)$ 

possible correlations in azimuth or  $p_{t,pair}$ .

Makes the previous extractions of  $\sigma_{eff}$  from the LHCb data invalid!

• a new mixed DPS mechanisms:

 $(gg \rightarrow g) \otimes (gg \rightarrow c\bar{c})$  or

 $(gg \to c\bar{c}) \otimes (gg \to c)$ 

followed by  $g \to D/\bar{D}$  and  $c \to D$  or  $\bar{c} \to \bar{D}$  fragmentation functions with DGLAP evolution.

• a new DPS mechanism:  $(gg \rightarrow g) \otimes (gg \rightarrow g)$ followed by  $g \rightarrow D, \overline{D}$  fragmentation with fragmentation function with DGLAP evolution.

## DPS parton production mechanisms

DPS production of *cc* or *gg* system, assuming factorization of the DPS model:

$$\begin{aligned} \frac{d\sigma^{DPS}(pp \to ccX)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \\ & \frac{1}{2\sigma_{eff}} \cdot \frac{d\sigma^{SPS}(pp \to c\bar{c}X_1)}{dy_1 d^2 p_{1,t}} \cdot \frac{d\sigma^{SPS}(pp \to c\bar{c}X_2)}{dy_2 d^2 p_{2,t}}, \\ \frac{d\sigma^{DPS}(pp \to ggX)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \\ & \frac{1}{2\sigma_{eff}} \cdot \frac{d\sigma^{SPS}(pp \to gX_1)}{dy_1 d^2 p_{1,t}} \cdot \frac{d\sigma^{SPS}(pp \to gX_2)}{dy_2 d^2 p_{2,t}}. \\ \frac{d\sigma^{DPS}(pp \to gcX)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \\ & \frac{1}{\sigma_{eff}} \cdot \frac{d\sigma^{SPS}(pp \to gX_1)}{dy_1 d^2 p_{1,t}} \cdot \frac{d\sigma^{SPS}(pp \to c\bar{c}X_2)}{dy_2 d^2 p_{2,t}}. \end{aligned}$$

## SPS parton production mechanisms

In the  $k_t$ -factorization approach, the cross section for relevant SPS cross sections:

$$\frac{d\sigma^{SPS}(pp \to c\bar{c}X)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \frac{1}{16\pi^2 (x_1 x_2 S)^2} \int \frac{d^2 k_{1t}}{\pi} \frac{d^2 k_{2t}}{\pi} \overline{\mathcal{M}_{RR \to c\bar{c}}}^2 \times \delta^2 \left(\vec{k}_{1t} + \vec{k}_{2t} - \vec{p}_{1t} - \vec{p}_{2t}\right) \mathcal{F}(x_1, k_{1t}^2, \mu^2) \mathcal{F}(x_2, k_{2t}^2, \mu^2)$$

$$\frac{d\sigma^{SPS}(pp \to ggX)}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \frac{1}{16\pi^2 (x_1 x_2 S)^2} \int \frac{d^2 k_{1t}}{\pi} \frac{d^2 k_{2t}}{\pi} \overline{|\mathcal{M}_{RR \to gg}|^2} \times \delta^2 \left(\vec{k}_{1t} + \vec{k}_{2t} - \vec{p}_{1t} - \vec{p}_{2t}\right) \mathcal{F}(x_1, k_{1t}^2, \mu^2) \mathcal{F}(x_2, k_{2t}^2, \mu^2)$$

$$\frac{d\sigma^{SPS}(pp \to gX)}{dyd^2p_t} = \frac{\pi}{(x_1x_2S)^2} \int \frac{d^2k_{1t}}{\pi} \frac{d^2k_{2t}}{\pi} \overline{|\mathcal{M}_{RR\to g}|^2} \times \delta^2(\vec{k}_{1t} + \vec{k}_{2t} - \vec{p}_t) \mathcal{F}(x_1, k_{1t}^2, \mu^2) \mathcal{F}(x_2, k_{2t}^2, \mu^2).$$

## Fragmentation

In order to calculate correlation observables for two mesons we follow the fragmentation function technique for hadronization process:

$$\begin{aligned} \frac{d\sigma_{cc}^{DPS}(pp \to DDX)}{dy_{1}dy_{2}d^{2}p_{1t}^{D}d^{2}p_{2t}^{D}} &= \int \frac{D_{c \to D}(z_{1})}{z_{1}} \cdot \frac{D_{c \to D}(z_{2})}{z_{2}} \cdot \frac{d\sigma^{DPS}(pp \to ccX)}{dy_{1}dy_{2}d^{2}p_{1t}^{c}d^{2}p_{2t}^{c}} dz_{1}dz_{2} \\ &+ \int \frac{D_{g \to D}(z_{1})}{z_{1}} \cdot \frac{D_{g \to D}(z_{2})}{z_{2}} \cdot \frac{d\sigma^{DPS}(pp \to ggX)}{dy_{1}dy_{2}d^{2}p_{1t}^{g}d^{2}p_{2t}^{g}} dz_{1}dz_{2} \\ &+ \int \frac{D_{g \to D}(z_{1})}{z_{1}} \cdot \frac{D_{c \to D}(z_{2})}{z_{2}} \cdot \frac{d\sigma^{DPS}(pp \to gcX)}{dy_{1}dy_{2}d^{2}p_{1t}^{g}d^{2}p_{2t}^{g}} dz_{1}dz_{2} \end{aligned}$$

where:  $p_{1t}^{g,c} = \frac{p_{1,t}^0}{z_1}$ ,  $p_{2,t}^{g,c} = \frac{p_{2t}^0}{z_2}$  and meson longitudinal fractions  $z_1, z_2 \in (0, 1)$ . For SPS *DD*-production via digluon fragmentation:

#### First results in the new approach





A D > A A + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### First results in the new approach





A B > 4
 B > 4
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C



#### First results in the new approach





Image: A math a math

## Potential problems

We get much too much. What can be a reason:

- Massless DGLAP evolution ?
- Different (bigger)  $\sigma_{eff}$  ?
- Low-x (nonlinear) effects ?
- High-x effects ?
- All of them ?

Below we will address some of them



Production of cc̄ Production of cc̄c̄ in DPS SPS cc̄cc̄ production in k<sub>7</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

## Larger $\sigma_{eff}$





Э

▲□▶ ▲□▶ ▲□▶

 $\sigma_{\rm eff}$  = 60 mb describes the data

Production of cc̄ Production of cc̄c̄ in DPS SPS cc̄cc̄ production in k<sub>7</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

## Larger $\sigma_{eff}$





ヘロト 人間 とくほとくほう

 $\sigma_{\rm eff}$  = 60 mb describes the data

Production of cc̄ Production of cc̄c̄ in DPS SPS cc̄c̄c̄ production in k<sub>7</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

## Larger $\sigma_{eff}$





・ロト ・ 聞 ト ・ ヨ ト ・ ヨ

 $\sigma_{\rm eff}$  = 60 mb describes the data

### Charm associated with jet



Figure: A diagrammatic representation of the considered mechanism for  $pp \rightarrow c\bar{c} + jet$  reaction.

#### R. Maciula and A. Szczurek, arXiv:1610.01810



#### Charm associated with jet, collinear approach

The hadronic cross section for inclusive  $pp \rightarrow c\bar{c} + jet$  reaction in the leading-order (LO) collinear approach can be written as:

$$d\sigma(pp \to c\bar{c} + jet) = \int dx_1 dx_2 \left[ g(x_1, \mu_F^2) g(x_2, \mu_F^2) \ d\hat{\sigma}_{gg \to c\bar{c}g} + \sum_f \ q_f(x_1, \mu_F^2) g(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}q} + g(x_1, \mu_F^2) \sum_f \ q_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}q} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c\bar{c}\bar{c}\bar{q}} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c}\bar{q} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c}\bar{q} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_2, \mu_F^2) \ d\hat{\sigma}_{qg \to c}\bar{q} + g(x_1, \mu_F^2) \sum_f \ \bar{q}_f(x_1, \mu_F^2)$$

where  $g(x_{1,2}, \mu_F^2)$ ,  $q_f(x_{1,2}, \mu_F^2)$  and  $\bar{q}_f(x_{1,2}, \mu_F^2)$  are the standard collinear parton distribution functions (PDFs) for gluons, quarks and antiquarks, respectively, carrying  $x_{1,2}$  momentum fractions of the proton and evaluated at the factorization scale  $\mu_F$ . Here,  $d\hat{\sigma}$  are the elementary partonic cross sections for a given  $2 \rightarrow 3$  subprocess.

### Charm associated with jet

$$d\hat{\sigma} = \frac{1}{2\hat{s}} \overline{|\mathcal{M}_{gg \to c\bar{c}g}|^2} \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} (2\pi)^4 \delta^3 (p_1 + p_2 + p_3 - k_1 - k_1)$$
(8)

where  $\mathcal{M}_{gg \to c\bar{c}g}$  is the partonic on-shell matrix element,  $\hat{s}$  is the partonic center-of-mass energy squared,



## Charm associated with jet, $k_t$ -factorization approach

For  $k_T$ -factorization approach:

$$d\sigma(pp \to c\bar{c} + jet) = \int dx_1 \frac{d^2 k_{1t}}{\pi} dx_2 \frac{d^2 k_{2t}}{\pi} \left[ \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*g^* \to c\bar{c}g} \right. \\ \left. + \mathcal{F}_q(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{q^*g^* \to c\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_q(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right] \\ \left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right]$$

$$\left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right]$$

$$\left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right]$$

$$\left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right]$$

$$\left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{g^*\bar{q}^* \to c} \right]$$

$$\left. + \mathcal{F}_{\bar{q}}(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*g^* \to c\bar{c}\bar{c}\bar{q}} + \mathcal{F}_g(x_1, k_{1t}^2, \mu_F^2) \mathcal{F}_{\bar{q}}(x_2, k_{2t}^2, \mu_F^2) d\hat{\sigma}_{\bar{q}^*\bar{q}^* \to c} \right]$$

Here,  $k_{1,2t}$  are transverse momenta of incident partons (new degrees of freedom) and  $\mathcal{F}(x, k_t^2, \mu_F^2)$ 's are transverse momentum dependent, unintegrated parton distribution functions (uPDFs). The elementary partonic cross sections are defined in terms of off-shell matrix elements, that takes into account that both partons entering the hard process are off-shell with virtualities  $k_1^2 = -k_{1t}^2$  and  $k_2^2 = -k_{2t}^2$ .

A D F A P F A D F A D F

Production of cc̄ Production of cc̄cc̄ in DPS SPS cc̄cc̄ production in k<sub>1</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

#### Charm associated with jet, collinear-factorization



Figure:

qg and gq contributions much smaller than gg contribution plateau at small  $p_{t,c}$ 



(日)

Production of cc̄ Production of cc̄cc̄ in DPS SPS cc̄cc̄ production in k<sub>1</sub>-factorization Perturbative parton splitting Gluon fragmentation to D meson 00000000

#### Charm associated with jet, collinear-factorization



Figure:

Situation changes at large rapidities (*qg* may be important for atmospheric neutrinos).

(日)

#### Charm associated with jet, $k_t$ -factorization



Figure:

#### strong dependence on UGDFs



・ロト ・ 聞 ト ・ ヨ ト ・ ヨ

#### Charm associated with jet, $k_t$ -factorization





(日)

Figure:

#### strong dependence on UGDFs



#### 2to2 versus 2to3



Figure:

$$rac{d\sigma_{car{c}}}{dp_{t,c}} pprox rac{d\sigma_{car{c}l}}{dp_{t,c}}$$
 at large transverse momenta



Э

# $D^0$ + jet production

Table: The calculated cross sections in microbarns for inclusive  $D^0 + \text{jet}$  (plus  $\overline{D^0} + \text{jet}$ ) production in *pp*-scattering at  $\sqrt{s} = 13$  TeV for different cuts on transverse momentum of the associated jet. Here, the  $D^0$  meson is required to have  $|y^{D^0}| < 2.5$  and  $p_T^{D^0} > 3.5$  GeV and the rapidity of the associated jet is  $|y^{\text{jet}}| < 4.9$ , that corresponds to the ATLAS detector acceptance.

| jett                            | collinear   | collinear <i>k<sub>T</sub></i> -tactorization approacn |                             |            |
|---------------------------------|-------------|--------------------------------------------------------|-----------------------------|------------|
| $p_{T,min}$ cuts                | MMHT2014nlo | KMR                                                    | KMR $k_T < p_{T,min}^{jet}$ | Jung setA0 |
| $p_{_T}^{jet} > 20  \text{GeV}$ | 22.36       | 49.20                                                  | 33.12                       | 43.45      |
| $p_T^{jet} > 35  \text{GeV}$    | 3.70        | 9.60                                                   | 6.76                        | 6.79       |
| $p_{T}^{jet} > 50  { m GeV}$    | 1.14        | 3.32                                                   | 2.45                        | 1.94       |

Relatively large cross sections -- could be measured.



A D F A P F A D F A D F

# $D^0$ + jet production



Figure: Azimuthal angle correlation between  $D^0$  or  $\overline{D}^0$  meson and jet for the collinear and  $k_7$ -factorization approaches.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### New possibility to test UGDFs

### Single-diffractive production of charm in $k_t$ -factorization



Figure: A diagrammatic representation of the mechanisms of single-diffractive production of heavy quark pairs within the  $k_{t}$ -factorization approach.

M. Luszczak, R. Maciula, A. Szczurek, M. Trzebinski, arXiv:1606.09512



(日)

#### Single-diffractive production of charm in $k_t$ -factorization

$$d\sigma^{SD(a)}(p_{a}p_{b} \to p_{a}c\bar{c} XY) = \int dx_{1} \frac{d^{2}k_{1t}}{\pi} dx_{2} \frac{d^{2}k_{2t}}{\pi} d\hat{\sigma}(g^{*}g^{*} \to c\bar{c}) \times \mathcal{F}_{g}(x_{1}, k_{1t}^{2}, \mu^{2}) \cdot \mathcal{F}_{g}(x_{2}, k_{2t}^{2}, \mu^{2}), \quad (10)$$

$$d\sigma^{SD(b)}(p_{a}p_{b} \to c\bar{c}p_{b} XY) = \int dx_{1} \frac{d^{2}k_{1t}}{\pi} dx_{2} \frac{d^{2}k_{2t}}{\pi} d\hat{\sigma}(g^{*}g^{*} \to c\bar{c}) \times \mathcal{F}_{g}(x_{1}, k_{1t}^{2}, \mu^{2}) \cdot \mathcal{F}_{g}^{D}(x_{2}, k_{2t}^{2}, \mu^{2}), \quad (11)$$



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Production of cc. Production of cc.cc in DPS SPS cc.cc production in k+-factorization Perturbative parton splitting Gluon fragmentation to D mesor

### <u>Single-diffractive production of charm in $k_t$ -factorization</u>

$$g^{D}(x,\mu^{2}) = \int dx_{P} d\beta \,\delta(x-x_{P}\beta)g_{P}(\beta,\mu^{2})\,f_{P}(x_{P}) = \int_{x}^{x^{max}} \frac{dx_{P}}{x_{P}}\,f_{P}(x_{P})g_{P}(\frac{x}{x_{P}},\mu^{2}),$$
(12)

where  $\beta = \frac{x}{x_p}$  is the longitudinal momentum fraction of pomeron carried by gluon and the flux of pomerons may be taken as:

$$f_{P}(x_{P}) = \int_{t_{min}}^{t_{max}} dt f(x_{P}, t).$$
(13)

Diffractive unintegrated gluon distribution (standard KMR approach)

$$f_{g}^{D}(x,k_{t}^{2},\mu^{2}) \equiv \frac{\partial}{\partial \log k_{t}^{2}} \left[ g^{D}(x,k_{t}^{2}) T_{g}(k_{t}^{2},\mu^{2}) \right] = T_{g}(k_{t}^{2},\mu^{2}) \frac{a_{S}(k_{t}^{2})}{2\pi} \times (14)$$
$$\int_{x}^{1} dz \left[ \sum_{q} P_{gq}(z) \frac{x}{z} q^{D} \left( \frac{x}{z},k_{t}^{2} \right) + P_{gg}(z) \frac{x}{z} g^{D} \left( \frac{x}{z},k_{t}^{2} \right) \Theta \left( \Delta - z \right) \right]$$

The calculation for first time in  $k_t$ -factorization.

### Single-diffractive production of charm in $k_t$ -factorization



Figure:

• • • • • • • • •

Large cross section (feasibility studies) Differences at larger rapidities



#### Single-diffractive production of charm in $k_t$ -factorization



Large decorrelation as for the inclusive case



< □ > < 同 > < 三

#### Single-diffractive production of charm in $k_t$ -factorization



Figure:

reggeon contribution much smaller than pomeron contribution



## Conclusions

- k<sub>t</sub>-factorization provides good description of charm production at RHIC and LHC.
- Surprisingly large cross sections for inclusive cccc due to DPS.
- Relatively small cross sections for SPS cccc.
- Multiple  $c\bar{c}$  pairs can be produced in p p collisions at the LHC and FCC.
- Look at correlations between same flavour charmed mesons such as  $D^0 D^0$ .
- Look at correlations between  $e^+\mu^+$  or  $e^-\mu^-$  from semileptonic decays (ALICE, CMS).
- Enhancement of the number of  $c\bar{c}$  pairs in AA collisions
  - $\rightarrow$  important for recombination/coalescence

 $\rightarrow$  further enhancement of hidden-charm meson production (J/ $\psi$ , at higher energies.

イロト イポト イヨト イヨト

## Conclusion, continued

- Gluon fragmentation changes the picture.
- Several new contributions (both DPS and SPS)
- $d\sigma/d\phi_{DD} \neq \text{const}$

Difficult to get it from DPS mechanisms (Echevarria, Kasemets, Mulders, Pisano) as spin correlations.

- Too big  $D^0 D^0$  cross section with canonical value  $\sigma_{eff}$  = 15 mb.
- Possible solutions:
  - larger  $\sigma_{eff}$  (good reasons) (larger rapidity)
  - wrong small-x UGDF, saturation? (strong effect)
  - wrong large-x UGDF ?
  - problems with massless evolution of FF ?
- We can describe the LHCb data with strongly reduced σ<sub>eff</sub> and strongly modified low-x glue. Are the strong low-x modifications consistent very other processes?

#### Conclusion, continued

- Associated production of ccjet for a first time in the k<sub>t</sub>-factorization approach
- Many new correlation observables have been calculated
- Relation between  $2 \rightarrow 2$  and  $2 \rightarrow 3$  processes both in collinear and  $k_T$ -factorization approach
- First predictions for  $D^0$ -jet production for ATLAS acceptance
- First calculation for single-diffractive production of charm in  $k_{t}$ -factorization approach.
- Large cross section but no consistent treatment of gap survival factor.

